Phase transition in the spiked random tensor with Rademacher prior

We consider the problem of detecting a deformation from a symmetric Gaussian random $p$-tensor $(p\geq 3)$ with a rank-one spike sampled from the Rademacher prior. Recently in Lesieur et al. (2017), it was proved that there exists a critical threshold $\beta_p$ so that when the signal-to-noise ratio exceeds $\beta_p$, one can distinguish the spiked and unspiked tensors and weakly recover the prior via the minimal mean-square-error method. On the other side, Perry, Wein, and Bandeira (2017) proved that there exists a $\beta_p'<\beta_p$ such that any statistical hypothesis test can not distinguish these two tensors, in the sense that their total variation distance asymptotically vanishes, when the signa-to-noise ratio is less than $\beta_p'$. In this work, we show that $\beta_p$ is indeed the critical threshold that strictly separates the distinguishability and indistinguishability between the two tensors under the total variation distance. Our approach is based on a subtle analysis of the high temperature behavior of the pure $p$-spin model with Ising spin, arising initially from the field of spin glasses. In particular, we identify the signal-to-noise criticality $\beta_p$ as the critical temperature, distinguishing the high and low temperature behavior, of the Ising pure $p$-spin mean-field spin glass model.

[1]  Galen Reeves,et al.  The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[2]  Samy Tindel,et al.  The p-Spin Interaction Model with External Field , 2002 .

[3]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[4]  Marcelo J. Moreira,et al.  Asymptotic power of sphericity tests for high-dimensional data , 2013, 1306.4867.

[5]  Dmitry Panchenko,et al.  The Parisi formula for mixed $p$-spin models , 2011, 1112.4409.

[6]  Nicolas Macris,et al.  The stochastic interpolation method: A simple scheme to prove replica formulas in Bayesian inference , 2017, ArXiv.

[7]  Wei-Kuo Chen,et al.  The Legendre Structure of the Parisi Formula , 2015, 1510.03414.

[8]  D. Panchenko The free energy in a multi-species Sherrington-Kirkpatrick model , 2013, 1310.6679.

[9]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[10]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  A. Bovier,et al.  FLUCTUATIONS OF THE FREE ENERGY IN THE REM AND THE P-SPIN SK MODELS , 2000, cond-mat/0007175.

[12]  Nicolas Macris,et al.  Phase Transitions, Optimal Errors and Optimality of Message-Passing in Generalized Linear Models , 2017, ArXiv.

[13]  Michael I. Jordan,et al.  Finite Size Corrections and Likelihood Ratio Fluctuations in the Spiked Wigner Model , 2017, ArXiv.

[14]  Ankur Moitra,et al.  Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization , 2016, ArXiv.

[15]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[16]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[17]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[18]  Afonso S. Bandeira,et al.  Statistical limits of spiked tensor models , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[19]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[20]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[21]  Wei-Kuo Chen,et al.  On concentration properties of disordered Hamiltonians , 2017, 1706.08337.

[22]  Wei-Kuo Chen,et al.  Variational representations for the Parisi functional and the two-dimensional Guerra-Talagrand bound , 2015, 1501.06635.

[23]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[24]  Wei-Kuo Chen,et al.  The Parisi Formula has a Unique Minimizer , 2014, 1402.5132.

[25]  Florent Krzakala,et al.  Statistical and computational phase transitions in spiked tensor estimation , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[26]  Andrea Montanari,et al.  Information-theoretically optimal sparse PCA , 2014, 2014 IEEE International Symposium on Information Theory.

[27]  Andrea Montanari,et al.  On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank One Perturbations of Gaussian Tensors , 2014, IEEE Transactions on Information Theory.

[28]  J. S. Rowlinson,et al.  PHASE TRANSITIONS , 2021, Topics in Statistical Mechanics.

[29]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[30]  G. B. Arous,et al.  The Landscape of the Spiked Tensor Model , 2017, Communications on Pure and Applied Mathematics.

[31]  Satish Babu Korada,et al.  Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph , 2009 .

[32]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[33]  Nicolas Macris,et al.  Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula , 2016, NIPS.

[34]  A. Montanari,et al.  Asymptotic mutual information for the balanced binary stochastic block model , 2016 .

[35]  Wei-Kuo Chen,et al.  Chaos in the Mixed Even-Spin Models , 2012, 1211.7354.

[36]  Dmitry Panchenko,et al.  Free energy in the mixed p-spin models with vector spins , 2015, 1512.04441.

[37]  D. Ruelle,et al.  Some rigorous results on the Sherrington-Kirkpatrick spin glass model , 1987 .

[38]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[39]  Tim Austin Mean field models for spin glasses , 2012 .

[40]  Aukosh Jagannath,et al.  A Dynamic Programming Approach to the Parisi Functional , 2015, 1502.04398.

[41]  Wei-Kuo Chen On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction , 2011, 1105.2604.

[42]  Nicolas Macris,et al.  The mutual information in random linear estimation , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[43]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[44]  Nicolas Macris,et al.  The layered structure of tensor estimation and its mutual information , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[45]  Marc Lelarge,et al.  Fundamental limits of symmetric low-rank matrix estimation , 2016, Probability Theory and Related Fields.

[46]  Florent Krzakala,et al.  Mutual information in rank-one matrix estimation , 2016, 2016 IEEE Information Theory Workshop (ITW).

[47]  N. Macris,et al.  The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference , 2018, Probability Theory and Related Fields.

[48]  Andrea Montanari,et al.  Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics , 2014, IEEE Transactions on Information Theory.

[49]  M. Talagrand The parisi formula , 2006 .