Critical parameters for non-hermitian Hamiltonians

PT-symmetric Hamiltonians exhibit real eigenvalues.Real eigenvalues appear when PT-symmetry is unbroken.The range of real eigenvalues is determined by exceptional points or critical parameters.The diagonalization method is suitable for the calculation of critical parameters.Degenerate eigenvalues require a more general definition of unbroken symmetry. We calculate accurate critical parameters for a class of non-hermitian Hamiltonians by means of the diagonalization method. We study three one-dimensional models and two perturbed rigid rotors with PT symmetry. One of the latter models illustrates the necessity of a more general condition for the appearance of real eigenvalues that we also discuss here.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Miloslav Znojil symmetric square well , 2001 .

[3]  Carl M. Bender,et al.  The Script C operator in Script PScript T-symmetric quantum theories , 2004 .

[4]  Heiss Repulsion of resonance states and exceptional points , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Carl M. Bender,et al.  Extending $\mathcal{P}\mathcal{T}$ Symmetry from Heisenberg Algebra to E2 Algebra , 2010, 1009.3236.

[6]  M. Znojil,et al.  Spontaneous breakdown of PT symmetry in the solvable square-well model , 2001, hep-th/0111213.

[7]  W. Heiss,et al.  Exceptional Points – Their Universal Occurrence and Their Physical Significance , 2004 .

[8]  H. L. Harney,et al.  The chirality of exceptional points , 2001 .

[9]  Carlos R. Handy,et al.  Orthogonal polynomial projection quantization: a new Hill determinant method , 2013 .

[10]  Michael V Berry,et al.  Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians , 2001 .

[11]  J. Rubinstein,et al.  Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents. , 2007, Physical review letters.

[12]  W. Heiss,et al.  Avoided level crossing and exceptional points , 1990 .

[13]  C. J. Tymczak,et al.  Multiscale reference function analysis of the 𝒫𝒯 symmetry breaking solutions for the P2 + iX 3 + iαX Hamiltonian , 2001 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  Carl M. Bender,et al.  phase transition in multidimensional quantum systems , 2012, 1206.5100.

[16]  Carl M. Bender,et al.  Calculation of the hidden symmetry operator in -symmetric quantum mechanics , 2002 .

[17]  Miloslav Znojil,et al.  Periodic Square-Well Potential and Spontaneous Breakdown of PT-symmetry , 2004 .

[18]  Eric Delabaere,et al.  Spectral analysis of the complex cubic oscillator , 2000 .

[19]  C. Handy,et al.  Generating converging bounds to the (complex) discrete states of the P2 + iX3 + iαX Hamiltonian , 2001 .

[20]  Carlos R. Handy,et al.  Spectral bounds for the PT-breaking Hamiltonian p2 + x4 + iax , 2003 .

[21]  Miloslav Znojil,et al.  Strong-coupling expansions for the -symmetric oscillators , 1998 .

[22]  Francisco M. Fernández,et al.  Introduction to Perturbation Theory in Quantum Mechanics , 2000 .

[23]  E. Wigner Normal Form of Antiunitary Operators , 1960 .