Small Limit Points of Mahler's Measure

Let M(P(z1, . . . , zn)) denote Mahler's measure of the polynomial P(z1, . . . , zn). Measures of polynomials in n variables arise naturally as limiting values of measures of polynomials in fewer variables. We describe several methods for searching for polynomials in two variables with integer coefficients having small measure, demonstrate effective methods for computing these measures, and identify 48 polynomials P(x, y) with integer coefficients, irreducible over ℚ, for which 1 < M(P(x, y)) < 1.37.

[1]  A. Bazylewicz,et al.  On the product of the conjugates outside the unit circle of an algebraic integer , 1976 .

[2]  F. Rodriguez Villegas,et al.  Modular Mahler Measures I , 1999 .

[3]  R. Salem,et al.  Power series with integral coefficients , 1945 .

[4]  Kenneth J. Giuliani,et al.  Small Salem Numbers , 1997 .

[5]  Mesure de Mahler d'hypersurfaces K3 , 2005, math/0501153.

[6]  Christopher Deninger,et al.  Deligne periods of mixed motives, -theory and the entropy of certain ℤⁿ-actions , 1997 .

[7]  Michael J. Mossinghoff Polynomials with small Mahler measure , 1998, Math. Comput..

[8]  D. Boyd Uniform Approximation to Mahler’s Measure in Several Variables , 1998, Canadian mathematical bulletin.

[9]  Fritz Keinert,et al.  Uniform approximation to , 1991 .

[10]  Georges Rhin,et al.  New Methods Providing High Degree Polynomials with Small Mahler Measure , 2003, Exp. Math..

[11]  K. Mahler,et al.  On Some Inequalities for Polynomials in Several Variables , 1962 .

[12]  Kenneth B. Huber Department of Mathematics , 1894 .

[13]  Andrzej Schinzel,et al.  Polynomials with Special Regard to Reducibility , 2000 .

[14]  C. Siegel,et al.  Algebraic integers whose conjugates lie in the unit circle , 1944 .

[15]  David W. Boyd,et al.  Speculations Concerning the Range of Mahler's Measure , 1980, Canadian Mathematical Bulletin.

[16]  Michael J. Mossinghoff,et al.  Perturbing polynomials with all their roots on the unit circle , 1998, Math. Comput..

[17]  Valérie Flammang,et al.  Integer transfinite diameter and polynomials with small Mahler measure , 2006, Math. Comput..

[18]  D. Boyd Kronecker's theorem and Lehmer's problem for polynomials in several variables , 1981 .

[19]  R. Breusch On the distribution of the roots of a polynomial with integral coefficients , 1951 .

[20]  Susan G. Williams,et al.  Mahler Measure of Alexander Polynomials , 2001, math/0105234.

[21]  Karim Belabas,et al.  User’s Guide to PARI / GP , 2000 .

[22]  David W. Boyd,et al.  Mahler's Measure and Special Values of L-functions , 1998, Exp. Math..

[23]  W. Lawton A problem of Boyd concerning geometric means of polynomials , 1983 .

[24]  D. H. Lehmer Factorization of Certain Cyclotomic Functions , 1933 .

[25]  D. Boyd,et al.  Mahler’s Measure and the Dilogarithm (I) , 2002, Canadian Journal of Mathematics.

[26]  David W. Boyd,et al.  Reciprocal polynomials having small measure. II , 1980 .