On latent fingerprint minutiae extraction using stacked denoising sparse AutoEncoders

Latent fingerprint identification is of critical importance in criminal investigation. FBI's Next Generation Identification program demands latent fingerprint identification to be performed in lights-out mode, with very little or no human intervention. However, the performance of an automated latent fingerprint identification is limited due to imprecise automated feature (minutiae) extraction, specifically due to noisy ridge pattern and presence of background noise. In this paper, we propose a novel descriptor based minutiae detection algorithm for latent fingerprints. Minutia and non-minutia descriptors are learnt from a large number of tenprint fingerprint patches using stacked denoising sparse autoencoders. Latent fingerprint minutiae extraction is then posed as a binary classification problem to classify patches as minutia or non-minutia patch. Experiments performed on the NIST SD-27 database shows promising results on latent fingerprint matching.

[1]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition, Second Edition , 2009 .

[2]  Juan J. Igarza,et al.  MCYT baseline corpus: a bimodal biometric database , 2003 .

[3]  Richa Singh,et al.  On matching latent to latent fingerprints , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[4]  Richa Singh,et al.  Simultaneous latent fingerprint recognition , 2011, Appl. Soft Comput..

[5]  Richa Singh,et al.  Combining pores and ridges with minutiae for improved fingerprint verification , 2009, Signal Process..

[6]  Davide Maltoni,et al.  Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Michael D. Garris,et al.  NIST Special Database 27 Fingerprint Minutiae From Latent and Matching Tenprint Images , 2000 .

[8]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[9]  Xin Yang,et al.  A cross-device matching fingerprint database from multi-type sensors , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[10]  Anil K. Jain,et al.  Segmentation and Enhancement of Latent Fingerprints: A Coarse to Fine RidgeStructure Dictionary , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Richa Singh,et al.  Automated clarity and quality assessment for latent fingerprints , 2013, 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[12]  Anil K. Jain,et al.  Latent Fingerprint Matching Using Descriptor-Based Hough Transform , 2011, IEEE Transactions on Information Forensics and Security.

[13]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[14]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[16]  S.K. Singh,et al.  Quality Induced Fingerprint Identification using Extended Feature Set , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[17]  Raymond N. J. Veldhuis,et al.  Fingerprint Verification Using Spectral Minutiae Representations , 2009, IEEE Transactions on Information Forensics and Security.

[18]  Anil K. Jain,et al.  Latent Fingerprint Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Craig Watson,et al.  NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS), NIST Special Database 4 , 1992 .