Photospheric supergranular flows and magnetic flux emergence

A recent study carried out on high sensitivity SUNRISE/IMAX data has reported about the existence of areas of limited flux emergence in the quiet Sun. By exploiting an independent and longer (4 hours) data set acquired by HINODE/SOT, we further investigate these regions by analysing their spatial distribution and relation with the supergranular flow. Our findings, while confirming the presence of these calm areas, also show that the rate of emergence of small magnetic elements is largely suppressed at the locations where the divergence of the supergranular plasma flows is positive. This means that the dead calm areas previously reported in literature are not randomly distributed over the solar photosphere but they are linked to the supergranular cells themselves. These results are discussed in the framework of the recent literature.

[1]  J. C. del Toro Iniesta,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 QUIET SUN INTERNETWORK MAGNETIC FIELDS FROM THE INVERSION OF HINODE MEASUREMENTS , 2022 .

[2]  S. Solanki,et al.  Quiet Sun magnetic fields observed by Hinode: Support for a local dynamo , 2013, 1307.0789.

[3]  C. Parnell,et al.  Small-Scale Flux Emergence Observed Using Hinode/SOT , 2011 .

[4]  B. Welsch,et al.  Magnetic Helicity Injection by Horizontal Flows in the Quiet Sun. I. Mutual-Helicity Flux , 2003 .

[5]  B. Lites,et al.  HINODE OBSERVATIONS SUGGESTING THE PRESENCE OF A LOCAL SMALL-SCALE TURBULENT DYNAMO , 2011 .

[6]  S. Solanki,et al.  First evidence of interaction between longitudinal and transverse waves in solar magnetic elements , 2013, 1304.7088.

[7]  A. Vecchio,et al.  TURBULENT PAIR DISPERSION OF PHOTOSPHERIC BRIGHT POINTS , 2012 .

[8]  N. Weiss,et al.  Simulation of Large-Scale Flows at the Solar Surface , 1989 .

[9]  E. Priest,et al.  Domain structures in complex 3D magnetic fields , 2005 .

[10]  J. C. del Toro Iniesta,et al.  TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY Sunrise , 2010, 1008.1535.

[11]  B. T. Welsch,et al.  Solar Magnetic Tracking. I. Software Comparison and Recommended Practices , 2007, 0704.2921.

[12]  S. Solanki,et al.  The Frontier between Small-scale Bipoles and Ephemeral Regions in the Solar Photosphere: Emergence and Decay of an Intermediate-scale Bipole Observed with SUNRISE/IMaX , 2011, 1110.1405.

[13]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .

[14]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[15]  David W. Hughes,et al.  Solar dynamo theory : Solar dynamo theory: a new look at the origin of small-scale magnetic fields , 2001 .

[16]  V. Pillet,et al.  Solar Surface and Atmospheric Dynamics. The Photosphere , 2013 .

[17]  S. Solanki,et al.  UNNOTICED MAGNETIC FIELD OSCILLATIONS IN THE VERY QUIET SUN REVEALED BY SUNRISE/IMaX , 2011, 1103.0145.

[18]  L. B. Rubio,et al.  EMERGENCE OF SMALL-SCALE MAGNETIC LOOPS THROUGH THE QUIET SOLAR ATMOSPHERE , 2009, 0905.2691.

[19]  M. Schuessler,et al.  A solar surface dynamo , 2007, astro-ph/0702681.

[20]  S. Tobias,et al.  Limited role of spectra in dynamo theory: coherent versus random dynamos. , 2008, Physical review letters.

[21]  S. Solanki,et al.  Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo , 2010, 1001.2183.

[22]  Clare E. Parnell,et al.  Solar Magnetic Tracking. III. Apparent Unipolar Flux Emergence in High-resolution Observations , 2010 .

[23]  S. Tsuneta,et al.  Emergence of Small-Scale Magnetic Loops in the Quiet-Sun Internetwork , 2007, 0708.0844.

[24]  L. B. Rubio,et al.  THE CONNECTION BETWEEN INTERNETWORK MAGNETIC ELEMENTS AND SUPERGRANULAR FLOWS , 2012, 2401.06720.

[25]  A. M. Title,et al.  Transient horizontal magnetic fields in solar plage regions , 2008, 0802.1769.

[26]  F. Berrilli,et al.  The spectrum of kink-like oscillations of solar photospheric magnetic elements , 2013, 1310.2472.

[27]  D. Del Moro,et al.  DIFFUSION OF SOLAR MAGNETIC ELEMENTS UP TO SUPERGRANULAR SPATIAL AND TEMPORAL SCALES , 2013, 1305.4006.

[28]  M. Schuessler,et al.  Strong horizontal photospheric magnetic field in a surface dynamo simulation , 2008, 0801.1250.

[29]  S. Solanki,et al.  Structure and dynamics of isolated internetwork Ca II H bright points observed by SUNRISE , 2012, 1211.4836.

[30]  E. Priest,et al.  Coronal Flux Recycling Times , 2005 .

[31]  Fausto Cattaneo,et al.  On the Origin of Magnetic Fields in the Quiet Photosphere , 1999 .

[32]  Yang Liu,et al.  Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager , 2012 .

[33]  R. Cameron,et al.  TURBULENT SMALL-SCALE DYNAMO ACTION IN SOLAR SURFACE SIMULATIONS , 2010, 1002.2750.

[34]  TURBULENT DIFFUSION IN THE PHOTOSPHERE AS DERIVED FROM PHOTOSPHERIC BRIGHT POINT MOTION , 2011 .

[35]  On the polarimetric signature of emerging magnetic loops in the quiet-Sun , 2012, 1201.6501.

[36]  Resolving the Internal Magnetic Structure of the Solar Network , 2012, 1209.2584.

[37]  E. Hijano,et al.  DEAD CALM AREAS IN THE VERY QUIET SUN , 2012, 1206.4545.

[38]  Haimin Wang On the relationship between magnetic fields and supergranule velocity fields , 1988 .