Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

[1]  Y. Orikasa,et al.  Elucidating the Driving Force of Relaxation of Reaction Distribution in LiCoO2 and LiFePO4 Electrodes Using X-ray Absorption Spectroscopy , 2016 .

[2]  M. Wagemaker,et al.  Direct Observation of Li‐Ion Transport in Electrodes under Nonequilibrium Conditions Using Neutron Depth Profiling , 2015 .

[3]  Fiona C. Strobridge,et al.  Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO4-Electrodes in a Standard Coin Cell Battery , 2015 .

[4]  Z. Ogumi,et al.  X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO 4 lithium-ion battery cathode , 2014 .

[5]  Z. Ogumi,et al.  Spectroscopic X-ray Diffraction for Microfocus Inspection of Li-Ion Batteries , 2014 .

[6]  Jun Wang,et al.  In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy , 2014, Nature Communications.

[7]  A. Boulineau,et al.  Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction. , 2013, ACS nano.

[8]  J. Youn,et al.  Evaluation of slurry characteristics for rechargeable lithium-ion batteries , 2013 .

[9]  J. M. Perlado,et al.  Li distribution characterization in Li-ion batteries positive electrodes containing LixNi0.8Co0.15Al0.05O2 secondary particles (0.75 ⩽ x ⩽ 1.0) , 2012 .

[10]  T. Ohta,et al.  Development of a two-dimensional imaging system of X-ray absorption fine structure. , 2012, Journal of synchrotron radiation.

[11]  Xiangyun Song,et al.  Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode , 2012 .

[12]  Katherine C. Hess,et al.  Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells. , 2011, Analytical chemistry.

[13]  Jeffrey Thomas Remillard,et al.  Local State‐of‐Charge Mapping of Lithium‐Ion Battery Electrodes , 2011 .

[14]  Chia‐Chin Chang,et al.  Effects of Dispersant on the Conductive Carbon for LiFePO4 Cathode , 2011 .

[15]  D. Guyomard,et al.  Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO4 Composite Electrodes , 2010 .

[16]  K. Yasuda,et al.  Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode film impregnated with electrolyte , 2010 .

[17]  A. Jansen,et al.  Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries , 2010 .

[18]  D. Guyomard,et al.  Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes , 2010 .

[19]  Thomas J. Richardson,et al.  Visualization of Charge Distribution in a Lithium Battery Electrode , 2010 .

[20]  P. Novák,et al.  A multiple working electrode for electrochemical cells: a tool for current density distribution studies. , 2009, Angewandte Chemie.

[21]  M. Armand,et al.  Building better batteries , 2008, Nature.

[22]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[23]  E. Cairns,et al.  Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy , 2005 .

[24]  Y. Chiang,et al.  Electronic Structure and Electrical Conductivity of Undoped LiFePO4 , 2004 .

[25]  A. West,et al.  Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping , 1997 .

[26]  John Newman,et al.  Potential and Current Distribution in Electrochemical Cells Interpretation of the Half‐Cell Voltage Measurements as a Function of Reference‐Electrode Location , 1993 .

[27]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[28]  Hajime Arai,et al.  Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries , 2016 .

[29]  E. Cairns,et al.  Structural investigations of LiFePO 4 electrodes and in situ studies by Fe X-ray absorption spectroscopy , 2005 .