Comparative analysis of two discretizations of Ricci curvature for complex networks

We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.

[1]  Chiara Orsini,et al.  Hyperbolic graph generator , 2015, Comput. Phys. Commun..

[2]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[3]  Jin Akiyama,et al.  Discrete and Computational Geometry and Graphs , 2013, Lecture Notes in Computer Science.

[4]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[5]  J. Rogers Chaos , 1876 .

[6]  Y. Ollivier A visual introduction to Riemannian curvatures and some discrete generalizations , 2012 .

[7]  R W Eash,et al.  EQUILIBRIUM TRAFFIC ASSIGNMENT ON AN AGGREGATED HIGHWAY NETWORK FOR SKETCH PLANNING , 1983 .

[8]  Emil Saucan,et al.  Coarse geometry of evolving networks , 2018, J. Complex Networks.

[9]  Emil Saucan,et al.  Systematic evaluation of a new combinatorial curvature for complex networks , 2016, 1610.01507.

[10]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[11]  Ernesto Estrada,et al.  Journal of Complex Networks: Quo Vadis? , 2013, J. Complex Networks.

[12]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[13]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[14]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[15]  Hermann Karcher,et al.  A general comparison theorem with applications to volume estimates for submanifolds , 1978 .

[16]  Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing , 2014 .

[17]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[18]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[19]  J. Jost,et al.  Forman curvature for directed networks , 2016, 1605.04662.

[20]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[21]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[22]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[23]  B. M. Fulk MATH , 1992 .

[24]  Sumit Mukherjee,et al.  Exact and asymptotic results on coarse Ricci curvature of graphs , 2013, Discret. Math..

[25]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[26]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[27]  P. Holland,et al.  Transitivity in Structural Models of Small Groups , 1971 .

[28]  R. McCann,et al.  Analysis and Geometry of Metric Measure Spaces , 2013 .

[29]  Jean-Pierre Eckmann,et al.  Curvature of co-links uncovers hidden thematic layers in the World Wide Web , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ginestra Bianconi,et al.  Emergent Hyperbolic Network Geometry , 2016, Scientific Reports.

[31]  Lucy Skrabanek,et al.  PDZBase: a protein?Cprotein interaction database for PDZ-domains , 2005, Bioinform..

[32]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[34]  A. Bar-Noy,et al.  Jaccard Curvature—an Efficient Proxy for Ollivier-Ricci Curvature in Graphs , 2018 .

[35]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[36]  Ed Reznik,et al.  Graph Curvature for Differentiating Cancer Networks , 2015, Scientific Reports.

[37]  Bert Jüttler,et al.  Mathematics of Surfaces XII , 2007 .

[38]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[39]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[40]  S. Yau,et al.  Ricci curvature and eigenvalue estimate on locally finite graphs , 2010 .

[41]  Emil Saucan,et al.  Metric Ricci curvature for $PL$ manifolds , 2012, ArXiv.

[42]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[43]  Jie Gao,et al.  Discrete Ricci Flow for Geometric Routing , 2016, Encyclopedia of Algorithms.

[44]  M. Ben-Akiva,et al.  A THEORETICAL AND EMPIRICAL MODEL OF TRIP CHAINING BEHAVIOR , 1979 .

[45]  B. Bollobás The evolution of random graphs , 1984 .

[46]  J. Jost,et al.  Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator , 2011, 1105.3803.

[47]  J. Jost,et al.  Forman curvature for complex networks , 2016, 1603.00386.

[48]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[49]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[50]  Marko Bajec,et al.  Robust network community detection using balanced propagation , 2011, ArXiv.

[51]  S. Yau,et al.  Ricci curvature of graphs , 2011 .

[52]  D. A. Stone A combinatorial analogue of a theorem of Myers , 1976 .

[53]  P. V. Marsden,et al.  Measuring Tie Strength , 1984 .

[54]  Ilya R. Fischhoff,et al.  Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager , 2007, Oecologia.

[55]  Minping Qian,et al.  Networks: From Biology to Theory , 2007 .

[56]  Emil Saucan,et al.  Characterizing complex networks with Forman-Ricci curvature and associated geometric flows , 2016, J. Complex Networks.

[57]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[58]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[60]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[61]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[62]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  W. Marsden I and J , 2012 .

[64]  Jie Gao,et al.  Ricci curvature of the Internet topology , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[65]  Y. Ollivier Ricci curvature of metric spaces , 2007 .

[66]  W. Browder,et al.  Annals of Mathematics , 1889 .

[67]  Emil Saucan,et al.  Discrete curvatures and network analysis , 2017 .

[68]  Pascal Romon,et al.  Ricci Curvature on Polyhedral Surfaces via Optimal Transportation , 2014, Axioms.

[69]  A. Tannenbaum,et al.  Comparing Three Notions of Discrete Ricci Curvature on Biological Networks , 2017, 1712.02943.

[70]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[71]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[73]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[74]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[75]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Konstantin Avrachenkov,et al.  Cooperative Game Theory Approaches for Network Partitioning , 2017, COCOON.

[77]  J. Jost,et al.  The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature , 2017 .

[78]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume IV: Fascicle 2: Generating All Tuples and Permutations , 2005 .

[79]  日本数学会,et al.  Probabilistic Approach to Geometry , 2010 .

[80]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[82]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[83]  Jon M. Kleinberg,et al.  Romantic partnerships and the dispersion of social ties: a network analysis of relationship status on facebook , 2013, CSCW.

[84]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[85]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[86]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[87]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow: Theory and Applications , 2007, IMA Conference on the Mathematics of Surfaces.

[88]  Ming-Yang Kao,et al.  Encyclopedia of Algorithms , 2016, Springer New York.

[89]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[90]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[91]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[92]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[93]  Laurent Najman,et al.  Modern Approaches to Discrete Curvature , 2017 .