A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides
暂无分享,去创建一个
Henri Calandra | Serge Gratton | Luiz Mariano Carvalho | Xavier Vasseur | Rafael Lago | S. Gratton | H. Calandra | X. Vasseur | L. M. Carvalho | R. Lago
[1] E. Sturler,et al. A Block Iterative Solver for Complex Non-Hermitian Systems Applied to Large-Scale, Electronic-Structure Calculations , 2002 .
[2] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[3] Henri Calandra,et al. A deflated minimal block residual method for the solution of non-hermitian linear systems with multiple right-hand sides , 2012 .
[4] Elizabeth R. Jessup,et al. On Improving Linear Solver Performance: A Block Variant of GMRES , 2005, SIAM J. Sci. Comput..
[5] Lei Du,et al. A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..
[6] V. Simoncini,et al. Block Krylov subspace methods for the computation of structural response to turbulent wind , 2011 .
[7] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[8] Baojiang Zhong,et al. Simpler block GMRES for nonsymmetric systems with multiple right-hand sides. , 2008 .
[9] G. Golub,et al. Linear least squares solutions by householder transformations , 1965 .
[10] R. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .
[11] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[12] Martin J. Gander,et al. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .
[13] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] Tong Zhang,et al. Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..
[16] R. Freund,et al. Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm , 1997 .
[17] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[18] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[19] William E. Boyse,et al. A Block QMR Method for Computing Multiple Simultaneous Solutions to Complex Symmetric Systems , 1996, SIAM J. Sci. Comput..
[20] J. Baglama. Augmented Block Householder Arnoldi Method , 2008 .
[21] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[22] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[23] Yogi A. Erlangga,et al. Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .
[24] H. Sadok,et al. A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .
[25] M. Gutknecht,et al. The block grade of a block Krylov space , 2009 .
[26] Axel Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .
[27] Damian Loher. Reliable nonsymmetric block Lanczos algorithms , 2006 .
[28] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[29] X. Pinel,et al. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics , 2010 .
[30] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[31] J. Bérenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .
[32] Tetsuya Sakurai,et al. Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD , 2009, Comput. Phys. Commun..
[33] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[34] P. Soudais. Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies , 1994 .
[35] Rudnei Dias da Cunha,et al. Dynamic block GMRES: an iterative method for block linear systems , 2007, Adv. Comput. Math..
[36] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[37] D. O’Leary,et al. Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .
[38] Christian H. Bischof,et al. A Basis-Kernel Representation of Orthogonal Matrices , 1995, SIAM J. Matrix Anal. Appl..
[39] M. Sadkane,et al. Exact and inexact breakdowns in the block GMRES method , 2006 .
[40] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[41] Henri Calandra,et al. Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..
[42] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .