A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides

We propose a variant of the block GMRES method for the solution of linear systems of equations with multiple right-hand sides. We investigate a deflation strategy to detect when a linear combination of approximate solutions is already known that avoids performing expensive computational operations with the system matrix. This is especially useful when the cost of the preconditioner is supposed to be larger than the cost of orthogonalization in the block Arnoldi procedure. We specifically focus on the block GMRES method incorporating deflation at the end of each iteration proposed by Robbe and Sadkane [M. Robbe and M. Sadkane, Linear Algebra Appl., 419 (2006), pp. 265--285]. We extend their contribution by proposing that deflation be performed also at the beginning of each cycle. This change leads to a modified least-squares problem to be solved at each iteration and gives rise to a different behavior especially when multiple restarts are required to reach convergence. Additionally we investigate truncatio...

[1]  E. Sturler,et al.  A Block Iterative Solver for Complex Non-Hermitian Systems Applied to Large-Scale, Electronic-Structure Calculations , 2002 .

[2]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[3]  Henri Calandra,et al.  A deflated minimal block residual method for the solution of non-hermitian linear systems with multiple right-hand sides , 2012 .

[4]  Elizabeth R. Jessup,et al.  On Improving Linear Solver Performance: A Block Variant of GMRES , 2005, SIAM J. Sci. Comput..

[5]  Lei Du,et al.  A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..

[6]  V. Simoncini,et al.  Block Krylov subspace methods for the computation of structural response to turbulent wind , 2011 .

[7]  Roland W. Freund,et al.  A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..

[8]  Baojiang Zhong,et al.  Simpler block GMRES for nonsymmetric systems with multiple right-hand sides. , 2008 .

[9]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[10]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[11]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[12]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[13]  Andy A. Nikishin,et al.  Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Tong Zhang,et al.  Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..

[16]  R. Freund,et al.  Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm , 1997 .

[17]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[18]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[19]  William E. Boyse,et al.  A Block QMR Method for Computing Multiple Simultaneous Solutions to Complex Symmetric Systems , 1996, SIAM J. Sci. Comput..

[20]  J. Baglama Augmented Block Householder Arnoldi Method , 2008 .

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  B. Vital Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .

[23]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[24]  H. Sadok,et al.  A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .

[25]  M. Gutknecht,et al.  The block grade of a block Krylov space , 2009 .

[26]  Axel Ruhe Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .

[27]  Damian Loher Reliable nonsymmetric block Lanczos algorithms , 2006 .

[28]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[29]  X. Pinel,et al.  A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics , 2010 .

[30]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[31]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[32]  Tetsuya Sakurai,et al.  Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD , 2009, Comput. Phys. Commun..

[33]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[34]  P. Soudais Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies , 1994 .

[35]  Rudnei Dias da Cunha,et al.  Dynamic block GMRES: an iterative method for block linear systems , 2007, Adv. Comput. Math..

[36]  M. Gutknecht BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .

[37]  D. O’Leary,et al.  Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .

[38]  Christian H. Bischof,et al.  A Basis-Kernel Representation of Orthogonal Matrices , 1995, SIAM J. Matrix Anal. Appl..

[39]  M. Sadkane,et al.  Exact and inexact breakdowns in the block GMRES method , 2006 .

[40]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[41]  Henri Calandra,et al.  Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..

[42]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .