Extending bicolorings for Steiner Triple Systems

We initiate the study of extended bicolorings of Steiner triple systems (STS) which start with a $k$-bicoloring of an STS($v$) and end up with a $k$-bicoloring of an STS($2v+1$) obtained by a doubling construction, using only the original colors used in coloring the subsystem STS($v$). By producing many such extended bicolorings, we obtain several infinite classes of orders for which there exist STSs with different lower and upper chromatic number.

[1]  Zsolt Tuza,et al.  Upper chromatic number of Steiner triple and quadruple systems , 1997, Discret. Math..

[2]  Giovanni Lo Faro,et al.  The first BSTS with different upper and lower chromatic numbers , 2000, Australas. J Comb..

[3]  Mario Gionfriddo,et al.  Embedding balanced P3-designs into (balanced) P4-designs , 2008, Discret. Math..

[4]  Mario Gionfriddo,et al.  Colouring 4-cycle systems with equitably coloured blocks , 2004, Discret. Math..

[5]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[6]  Zsolt Tuza,et al.  Strict colourings for classes of steiner triple systems , 1998, Discrete Mathematics.

[7]  Vitaly I. Voloshin,et al.  On the upper chromatic number of a hypergraph , 1995, Australas. J Comb..

[8]  Zsolt Tuza,et al.  Strict colorings of Steiner triple and quadruple systems: a survey , 2003, Discret. Math..

[9]  公庄 庸三 Discrete math = 離散数学 , 2004 .

[10]  Alexander Rosa,et al.  Equitable Specialized Block-Colourings for Steiner Triple Systems , 2008, Graphs Comb..

[11]  Dennis Saleh Zs , 2001 .

[12]  Vitaly I. Voloshin,et al.  Bicolouring Steiner systems S(2, 4, v) , 2004, Discret. Math..

[13]  Z. Tuza,et al.  A class of Steiner systems S(2,4,v) with arcs of extremal size , 2007 .

[14]  M. Buratti,et al.  Lower and upper chromatic numbers for BSTSs(2 h - 1) ⁄ , 2001 .

[15]  Mario Gionfriddo,et al.  Equitable specialized block-colourings for 4-cycle systems - II , 2010, Discret. Math..

[16]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[17]  Mario Gionfriddo,et al.  2-Regular equicolourings for P4-designs , 2012, Discret. Math..

[18]  Charles J. Colbourn,et al.  Bicoloring Steiner Triple Systems , 1999, Electron. J. Comb..

[19]  Lorenzo Milazzo The monochromatic block number , 1997, Discret. Math..

[20]  Mario Gionfriddo,et al.  Equitable specialized block-colourings for 4-cycle systems - I , 2010, Discret. Math..

[21]  Vitaly I. Voloshin,et al.  The mixed hypergraphs , 1993, Comput. Sci. J. Moldova.