Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model

A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrödinger (NLS) equations, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglie’s plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable ‘weights’ of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning or supervised Levenberg–Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory.

[1]  Bernd Thaller,et al.  Visual Quantum Mechanics , 2006 .

[2]  Tijana T. Ivancevic,et al.  Nonlinear Quantum Neuro-Psycho-Dynamics with Topological Phase Transitions , 2008, 0807.3790.

[3]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[4]  David Levy,et al.  Book review: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence by Bart Kosko (Prentice Hall 1992) , 1992, CARN.

[5]  Sipe,et al.  Bound solitary waves in a birefringent optical fiber. , 1988, Physical review. A, General physics.

[6]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[7]  Vladimir G. Ivancevic,et al.  Dynamics of confined crowds modelled using Entropic Stochastic Resonance and Quantum Neural Networks , 2009, Int. J. Intell. Def. Support Syst..

[8]  Laxmidhar Behera,et al.  Quantum stochastic filtering , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[9]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[10]  S. Prabakaran,et al.  THE STATISTICAL MECHANICS OF FINANCIAL MARKETS , 2007 .

[11]  J. Yang,et al.  Interactions of vector solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Vladimir G Ivancevic,et al.  Complex Dynamics: Advanced System Dynamics in Complex Variables , 2007 .

[13]  M. C. Jensen Some Anomalous Evidence Regarding Market Efficiency , 1978 .

[14]  M. Lakshmanan,et al.  Bright and dark soliton solutions to coupled nonlinear Schrodinger equations , 1995 .

[15]  Jianke Yang,et al.  Classification of the solitary waves in coupled nonlinear Schro¨dinger equations , 1997 .

[16]  Malomed,et al.  Soliton trapping and daughter waves in the Manakov model. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[17]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[18]  M. Gregory Forest,et al.  On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system , 2000 .

[19]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[20]  Vladimir G. Ivancevic,et al.  High-Dimensional Chaotic and Attractor Systems , 2007 .

[21]  Ronnie Sircar,et al.  Option pricing under stochastic volatility: the exponential Ornstein–Uhlenbeck model , 2008, 0804.2589.

[22]  D. J. Benney,et al.  The Propagation of Nonlinear Wave Envelopes , 1967 .

[23]  Vladimir G. Ivancevic,et al.  Entropic Geometry of Crowd Dynamics , 2008, 0809.4069.

[24]  Wai Man Tse Policy implications in an adaptive financial economy , 1996 .

[25]  Vladimir G. Ivancevic Adaptive Wave Models for Option Pricing Evolution: Nonlinear and Quantum Schr\ , 2010 .

[26]  Alan R. Champneys,et al.  A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrodinger systems , 2002 .

[27]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[28]  L. Behera,et al.  Recurrent quantum neural network and its applications , 2006 .

[29]  Vladimir G Ivancevic,et al.  Crowd behavior dynamics: entropic path-integral model , 2009, 0906.5415.

[30]  Leslie G. Valiant,et al.  Cognitive computation , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[31]  Igor Aleksander Designing Conscious Systems , 2009, Cognitive Computation.

[32]  Vladimir G. Ivancevic,et al.  EXTENDING FEYNMAN'S FORMALISMS FOR MODELING HUMAN JOINT ACTION COORDINATION , 2009, 0906.5413.

[33]  Nick Lazarides,et al.  Coupled nonlinear Schrodinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[35]  Steven W. Poser Applying Elliott Wave theory profitably , 2003 .

[36]  Philip Rothman,et al.  Nonlinear time series analysis of economic and financial data , 1999 .

[37]  Pentti O. A. Haikonen,et al.  The Role of Associative Processing in Cognitive Computing , 2009, Cognitive Computation.

[38]  Vladimir G. Ivancevic,et al.  Life-space foam: A medium for motivational and cognitive dynamics , 2007, 0805.3861.

[39]  M. Gregory Forest,et al.  Nonfocusing Instabilities in Coupled, Integrable Nonlinear Schrödinger pdes , 2000, J. Nonlinear Sci..

[40]  T. Ivancevic,et al.  Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals , 2008 .

[41]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[42]  Vladimir G Ivancevic,et al.  Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling (Studies in Computational Intelligence) , 2007 .

[43]  Kaup Dj,et al.  Soliton trapping and daughter waves in the Manakov model. , 1993 .

[44]  Manuel Ammann,et al.  VaR for nonlinear financial instruments — linear approximation or full Monte Carlo? , 2001 .

[45]  S H Han,et al.  Stability of neural networks and solitons of field theory. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  T. Ivancevic,et al.  Geometrical Dynamics of Complex Systems , 2006 .

[47]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[48]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[49]  Lester Ingber,et al.  High-Resolution Path-Integral Development of Financial Options , 2000, ArXiv.

[50]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[51]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[52]  Vladimir G Ivancevic,et al.  Quantum Neural Computation , 2009 .

[53]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[54]  W. Freeman,et al.  Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics , 2005, q-bio/0511037.

[55]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[57]  Kevin N. Gurney,et al.  Reverse Engineering the Vertebrate Brain: Methodological Principles for a Biologically Grounded Programme of Cognitive Modelling , 2009, Cognitive Computation.

[58]  M. Lakshmanan,et al.  Shape-changing collisions of coupled bright solitons in birefringent optical fibers , 2000 .

[59]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[60]  Jarmo Hietarinta,et al.  Inelastic Collision and Switching of Coupled Bright Solitons in Optical Fibers , 1997, solv-int/9703008.

[61]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[62]  L. Behera,et al.  A Recurrent Quantum Neural Network Model to Describe Eye Tracking of Moving Targets , 2004, q-bio/0407001.

[63]  Anil K. Seth,et al.  Explanatory Correlates of Consciousness: Theoretical and Computational Challenges , 2009, Cognitive Computation.

[64]  Frans Pretorius,et al.  Adaptive mesh refinement for coupled elliptic-hyperbolic systems , 2006, J. Comput. Phys..

[65]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[66]  Paul C. Martin Statistical Physics: Statics, Dynamics and Renormalization , 2000 .

[67]  Danny Coomans,et al.  Classification Using Adaptive Wavelets for Feature Extraction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  A. Lo,et al.  Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis , 2005 .

[69]  James L. McClelland Is a Machine Realization of Truly Human-Like Intelligence Achievable? , 2009, Cognitive Computation.

[70]  Josep Perelló,et al.  Black–Scholes option pricing within Itô and Stratonovich conventions , 2000 .

[71]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[72]  Markus Porto,et al.  Skewness, long-time memory, and non-stationarity: Application to leverage effect in financial time series , 2008 .

[73]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[74]  Vladimir G Ivancevic,et al.  Quantum Leap: From Dirac and Feynman, Across the Universe, to Human Body and Mind , 2008 .

[75]  A. Lo The Adaptive Markets Hypothesis , 2004 .

[76]  T. Fan,et al.  New applications of developed Jacobi elliptic function expansion methods , 2005 .

[77]  Vladimir G Ivancevic,et al.  Computational Mind: A Complex Dynamics Perspective , 2007 .

[78]  Amir Hussain,et al.  Cognitive Computation: An Introduction , 2009, Cognitive Computation.

[79]  Sheppard,et al.  Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  M. Gregory Forest,et al.  On the construction of orbits homoclinic to plane waves in integrable coupled nonlinear Schrödinger systems , 2000 .

[81]  R. Trippi Chaos & nonlinear dynamics in the financial markets : theory, evidence and applications , 1995 .

[82]  F. Witte,et al.  Book Review: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets. Prof. Dr. Hagen Kleinert, 3rd extended edition, World Scientific Publishing, Singapore , 2003 .

[83]  Josep Perelló,et al.  The Escape Problem Under Stochastic Volatility: The Heston Model , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  J. Zinn-Justin Path integrals in quantum mechanics , 2005 .

[85]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[86]  R. R. Prechter,et al.  Elliott Wave Principle: Key to Market Behavior , 1978 .

[87]  John N. Elgin,et al.  Effective integration of the nonlinear vector Schrödinger equation , 2005 .

[88]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.