Diverging Fano factors

We illustrate, with reference to the so-called Fano factor, that dramatic differences between the two most popular phase-space distributions (Wigner's and Husimi's) become evident at the level of the harmonic oscillator treatment.

[1]  Manfredi,et al.  Entropy and wigner functions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  D. Wisniacki,et al.  Smoothed Wigner functions: a tool to resolve semiclassical structures , 2005 .

[3]  C. Zachos,et al.  Quantum mechanics in phase space : an overview with selected papers , 2005 .

[4]  W. Schleich,et al.  Quantum phase from photon counting and the Q-function , 1993 .

[5]  S. S. Mizrahi Quantum mechanics in the Gaussian wave-packet phase space representation , 1984 .

[6]  Escort Husimi distributions, Fisher information and nonextensivity , 2004, cond-mat/0402467.

[7]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Quantum mechanics in the gaussian wave-packet phase space representation III: From phase space probability functions to wave-functions , 1988 .

[9]  A. Miranowicz,et al.  LETTER TO THE EDITOR: Sub-Poissonian photon statistics of higher harmonics: quantum predictions via classical trajectories , 2000 .

[10]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[11]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[12]  Diego A Wisniacki Short-time decay of the Loschmidt echo. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Some properties of a non-negative quantum-mechanical distribution function , 1981 .

[14]  Joachim J. Włodarz,et al.  Entropy and Wigner Distribution Functions Revisited , 2003 .

[15]  A. Plastino,et al.  Statistical, noise-related non-classicality’s indicator , 2009 .

[16]  Hai-Woong Lee,et al.  Theory and application of the quantum phase-space distribution functions , 1995 .

[17]  Michael J. W. Hall,et al.  Quantum Properties of Classical Fisher Information , 1999, quant-ph/9912055.

[18]  A. Rivas,et al.  Hyperbolic scar patterns in phase space , 2001, nlin/0104068.

[19]  S. S. Mizrahi Quantum mechanics in the Gaussian wave-packet phase space representation II: Dynamics , 1986 .

[20]  B. Frieden,et al.  Physics from Fisher Information by B. Roy Frieden , 1998 .

[21]  Angelo Plastino,et al.  Fisher Information and Semiclassical Treatments , 2009, Entropy.

[22]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[23]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[24]  T. Curtright,et al.  Quantum Mechanics in Phase Space , 2011, 1104.5269.

[25]  Wojciech H Zurek,et al.  Quantum chaotic environments, the butterfly effect, and decoherence. , 2002, Physical review letters.

[26]  Plastino Symmetries of the Fokker-Planck equation and the Fisher-Frieden arrow of time. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[28]  Heisenberg-Fisher thermal uncertainty measure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A. R. Plastino,et al.  ON THE RELATIONSHIP BETWEEN THE FISHER-FRIEDEN-SOFFER ARROW OF TIME, AND THE BEHAVIOUR OF THE BOLTZMANN AND KULLBACK ENTROPIES , 1997 .

[30]  Wojciech Hubert Zurek,et al.  Sub-Planck structure in phase space and its relevance for quantum decoherence , 2001, Nature.