Diverging Fano factors
暂无分享,去创建一个
[1] Manfredi,et al. Entropy and wigner functions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] D. Wisniacki,et al. Smoothed Wigner functions: a tool to resolve semiclassical structures , 2005 .
[3] C. Zachos,et al. Quantum mechanics in phase space : an overview with selected papers , 2005 .
[4] W. Schleich,et al. Quantum phase from photon counting and the Q-function , 1993 .
[5] S. S. Mizrahi. Quantum mechanics in the Gaussian wave-packet phase space representation , 1984 .
[6] Escort Husimi distributions, Fisher information and nonextensivity , 2004, cond-mat/0402467.
[7] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] A. Miranowicz,et al. LETTER TO THE EDITOR: Sub-Poissonian photon statistics of higher harmonics: quantum predictions via classical trajectories , 2000 .
[10] L. Mandel,et al. Optical Coherence and Quantum Optics , 1995 .
[11] U. Fano. Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .
[12] Diego A Wisniacki. Short-time decay of the Loschmidt echo. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] Some properties of a non-negative quantum-mechanical distribution function , 1981 .
[14] Joachim J. Włodarz,et al. Entropy and Wigner Distribution Functions Revisited , 2003 .
[15] A. Plastino,et al. Statistical, noise-related non-classicality’s indicator , 2009 .
[16] Hai-Woong Lee,et al. Theory and application of the quantum phase-space distribution functions , 1995 .
[17] Michael J. W. Hall,et al. Quantum Properties of Classical Fisher Information , 1999, quant-ph/9912055.
[18] A. Rivas,et al. Hyperbolic scar patterns in phase space , 2001, nlin/0104068.
[19] S. S. Mizrahi. Quantum mechanics in the Gaussian wave-packet phase space representation II: Dynamics , 1986 .
[20] B. Frieden,et al. Physics from Fisher Information by B. Roy Frieden , 1998 .
[21] Angelo Plastino,et al. Fisher Information and Semiclassical Treatments , 2009, Entropy.
[22] Michael Brereton,et al. A Modern Course in Statistical Physics , 1981 .
[23] H. Weyl. Quantenmechanik und Gruppentheorie , 1927 .
[24] T. Curtright,et al. Quantum Mechanics in Phase Space , 2011, 1104.5269.
[25] Wojciech H Zurek,et al. Quantum chaotic environments, the butterfly effect, and decoherence. , 2002, Physical review letters.
[26] Plastino. Symmetries of the Fokker-Planck equation and the Fisher-Frieden arrow of time. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[27] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[28] Heisenberg-Fisher thermal uncertainty measure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] A. R. Plastino,et al. ON THE RELATIONSHIP BETWEEN THE FISHER-FRIEDEN-SOFFER ARROW OF TIME, AND THE BEHAVIOUR OF THE BOLTZMANN AND KULLBACK ENTROPIES , 1997 .
[30] Wojciech Hubert Zurek,et al. Sub-Planck structure in phase space and its relevance for quantum decoherence , 2001, Nature.