Design Optimization of Metal Nanocrystal Memory—Part I: Nanocrystal Array Engineering
暂无分享,去创建一个
Tuo-Hung Hou | U. Ganguly | T. Hou | E. Kan | U. Ganguly | Chungho Lee | V. Narayanan | E.C. Kan | Chungho Lee | V. Narayanan
[1] Chuanbin Mao,et al. Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication , 2007, IEEE Transactions on Electron Devices.
[2] Tuo-Hung Hou,et al. Design Optimization of Metal Nanocrystal Memory—Part II: Gate-Stack Engineering , 2006, IEEE Transactions on Electron Devices.
[3] U. Ganguly,et al. Asymmetric electric field enhancement in nanocrystal memories , 2005, IEEE Electron Device Letters.
[4] S.K. Banerjee,et al. Nanocrystal flash memory fabricated with protein-mediated assembly , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[5] E. Kan,et al. Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals , 2005 .
[6] D. Ielmini,et al. Modeling of tunneling P/E for nanocrystal memories , 2005, IEEE Transactions on Electron Devices.
[7] Dim-Lee Kwong,et al. Metal nanocrystal memory with high-/spl kappa/ tunneling barrier for improved data retention , 2005 .
[8] Edwin C. Kan,et al. Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications , 2005 .
[9] G. Atwood,et al. Future directions and challenges for ETox flash memory scaling , 2004, IEEE Transactions on Device and Materials Reliability.
[10] E. Kan,et al. Characterization of Number Fluctuations in Gate-last Metal Nanocrystal Nonvolatile Memory Array beyond 90nm CMOS Technology , 2004 .
[11] M. Koyanagi,et al. New non-volatile memory with extremely high density metal nano-dots , 2003, IEEE International Electron Devices Meeting 2003.
[12] E. Kan,et al. Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals , 2003, IEEE International Electron Devices Meeting 2003.
[13] Y. Zhang,et al. Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly , 2003, IEEE International Electron Devices Meeting 2003.
[14] Gerard Ghibaudo,et al. Modeling of the programming window distribution in multinanocrystals memories , 2003 .
[15] Tsu-Jae King,et al. Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance , 2003 .
[16] T. Hiramoto,et al. Large memory window and long charge-retention time in ultranarrow-channel silicon floating-dot memory , 2003 .
[17] G. Pei,et al. Metal nanocrystal memories. I. Device design and fabrication , 2002 .
[18] G. Pei,et al. Metal nanocrystal memories-part II: electrical characteristics , 2002 .
[19] Y. Hou,et al. Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices , 2002 .
[20] Gerard Ghibaudo,et al. Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices , 2001 .
[21] Enrico Sangiorgi,et al. Tunneling into interface states as reliability monitor for ultrathin oxides , 2000 .
[22] Extraction of the gate oxide thickness of N- and P-Channel MOSFETs below 20 /spl Aring/ from the substrate current resulting from valence-band electron tunneling , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).
[23] J. Wortman,et al. Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices , 1999 .
[24] Sandip Tiwari,et al. Kinetic modelling of electron tunneling processes in quantum dots coupled to field-effect transistors , 1998 .
[25] Lukas Novotny,et al. Theory of Nanometric Optical Tweezers , 1997 .
[26] Sandip Tiwari,et al. Volatile and non-volatile memories in silicon with nano-crystal storage , 1995, Proceedings of International Electron Devices Meeting.
[27] Joseph M. Crowley,et al. Fundamentals of applied electrostatics , 1986 .