Bayesian inference for multivariate copulas using pair-copula constructions.

This article provides a Bayesian analysis of pair-copula constructions (Aas et al., 2007 Insurance Math. Econom.) for modeling multivariate dependence structures. These constructions are based on bivariate t.copulas as building blocks and can model the nature of extremal events in bivariate margins individually. According to recent empirical studies (Fischer et al. (2007) and Berg and Aas (2007)) pair-copula constructions (PCCfs) outperform many other multivariate copula constructions in fitting multivariate financial data. Parameter estimation in multivariate copulas is generally performed using maximum likelihood. However confidence intervals for parameters of PCCfs are not easy to obtain and therefore statistical inference in these models has not been addressed so far. In this article we develop a Markov chain Monte Carlo (MCMC) algorithm which allows for interval estimation by means of credible intervals. Our MCMC algorithm can reveal unconditional as well as conditional independence in the data which can simplify resulting PCCfs. In applications we consider Norwegian financial returns and Euro swap rates and are able to identify meaningful conditional independencies in both data sets. For the Norwegian financial returns data our findings support the view of Norway as a healthy economy, while for the Euro swap rates data they explain the nature of small twists in the yield curve.

[1]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[2]  C. Robert,et al.  Some difficulties with some posterior probability approximations , 2008 .

[3]  Matthias Fischer,et al.  Constructing and generalizing given multivariate copulas: a unifying approach , 2012 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[6]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[7]  S. L. Scott Bayesian Methods for Hidden Markov Models , 2002 .

[8]  Hedibert Freitas Lopes,et al.  Copula, marginal distributions and model selection: a Bayesian note , 2008, Stat. Comput..

[9]  Marius Hofert,et al.  Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..

[10]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[11]  M. Pitt,et al.  Efficient Bayesian inference for Gaussian copula regression models , 2006 .

[12]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[13]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[14]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[15]  H. Joe Multivariate models and dependence concepts , 1998 .

[16]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[17]  A. Irturk,et al.  Term Structure of Interest Rates , 2006 .

[18]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[19]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[20]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[21]  K. Baba,et al.  Equivalence of Partial and Conditional Correlation Coefficients , 2005 .

[22]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[23]  Xiaohong Chen,et al.  STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS , 2009 .

[24]  Alexander J. McNeil,et al.  Dependent defaults in models of portfolio credit risk , 2003 .

[25]  Matthias Fischer,et al.  An empirical analysis of multivariate copula models , 2009 .

[26]  R. Nelsen An Introduction to Copulas , 1998 .

[27]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[28]  W. Kruskal Ordinal Measures of Association , 1958 .

[29]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[30]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[31]  Kenneth J. Koehler,et al.  Constructing multivariate distributions with specific marginal distributions , 1995 .

[32]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[33]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[34]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[35]  Markus Junker,et al.  Elliptical copulas: applicability and limitations , 2003 .

[36]  L. D. Valle Bayesian Copulae Distributions, with Application to Operational Risk Management , 2009 .

[37]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[38]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[39]  Patricia M. Morillas,et al.  A method to obtain new copulas from a given one , 2005 .

[40]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[41]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[42]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[43]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[44]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[45]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[46]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[47]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[48]  Ingmar Nolte Modeling a Multivariate Transaction Process , 2007 .

[49]  Kjersti Aas,et al.  Models for construction of multivariate dependence , 2007 .

[50]  R. Cooke,et al.  A parameterization of positive definite matrices in terms of partial correlation vines , 2003 .

[51]  Jean-Michel Marin,et al.  On some difficulties with a posterior probability approximation technique , 2008 .

[52]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[53]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[54]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[55]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[56]  A. Mira,et al.  The Stability of Factor Models of Interest Rates , 2005 .

[57]  R. Kohn,et al.  Efficient estimation of covariance selection models , 2003 .

[58]  Andrew J. Patton On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation , 2002 .

[59]  Robert B. Litterman,et al.  Common Factors Affecting Bond Returns , 1991 .

[60]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[61]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[62]  Ehud I. Ronn,et al.  Movements in the Term Structure of Interest Rates , 1997 .

[63]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[64]  Yanqin Fan,et al.  Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection , 2005 .

[65]  H. Joe Generating random correlation matrices based on partial correlations , 2006 .

[66]  C. Czado,et al.  Comparing point and interval estimates in the bivariate t-copula model with application to financial data , 2011 .

[67]  Peter Congdon,et al.  Bayesian model choice based on Monte Carlo estimates of posterior model probabilities , 2006, Comput. Stat. Data Anal..

[68]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .