Algebraic Signal Processing Theory: Cooley-Tukey-Type Algorithms for Polynomial Transforms Based on Induction

A polynomial transform is the multiplication of an input vector x∈ℂn by a matrix 𝒫b,α∈ℂn×n, whose (k,l)th element is defined as pl(αk) for polynomials pl(x)∈ℂ[x] from a list b={p0(x),…,pn-1(x)} and sample points αk∈ℂ from a list α={α0,…,αn-1}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An important example includes the discrete Fourier transform. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.

[1]  José M. F. Moura,et al.  Algebraic Signal Processing Theory: Cooley–Tukey Type Algorithms for DCTs and DSTs , 2007, IEEE Transactions on Signal Processing.

[2]  W. Kester Fast Fourier Transforms , 2003 .

[3]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[4]  S. Winograd On the multiplicative complexity of the Discrete Fourier Transform , 1979 .

[5]  Gabriele Steidl,et al.  Fast radix-p discrete cosine transform , 1992, Applicable Algebra in Engineering, Communication and Computing.

[6]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[7]  S. Winograd,et al.  Abelian semi-simple algebras and algorithms for the Discrete Fourier Transform , 1984 .

[8]  Thomas Kailath,et al.  Displacement-structure approach to polynomial Vandermonde and related matrices , 1997 .

[9]  Vladimir Britanak,et al.  The fast generalized discrete Fourier transforms: A unified approach to the discrete sinusoidal transforms computation , 1999, Signal Process..

[10]  Markus Püschel,et al.  Decomposing Monomial Representations of Solvable Groups , 2002, J. Symb. Comput..

[11]  C. Sidney Burrus,et al.  On the structure of efficient DFT algorithms , 1985, IEEE Trans. Acoust. Speech Signal Process..

[12]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  P. Diaconis,et al.  Efficient computation of the Fourier transform on finite groups , 1990 .

[14]  Zhongde Wang Fast algorithms for the discrete W transform and for the discrete Fourier transform , 1984 .

[15]  Markus Püschel,et al.  Algebraic Signal Processing Theory: Foundation and 1-D Time , 2008, IEEE Transactions on Signal Processing.

[16]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[17]  José M. F. Moura,et al.  Algebraic Signal Processing Theory: 1-D Space , 2008, IEEE Transactions on Signal Processing.

[18]  C. Sidney Burrus,et al.  On the number of multiplications necessary to compute a length-2nDFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[19]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[20]  José M. F. Moura,et al.  The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms , 2003, SIAM J. Comput..

[21]  M. Heideman Multiplicative Complexity of Discrete Fourier Transform , 1988 .

[22]  Peter J. Nicholson,et al.  Algebraic Theory of Finite Fourier Transforms , 1971, Journal of computer and system sciences (Print).

[23]  M. Burrow Representation Theory of Finite Groups , 1965 .

[24]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[25]  Markus Püschel,et al.  Algebraic Signal Processing Theory: Cooley–Tukey Type Algorithms for Real DFTs , 2008, IEEE Transactions on Signal Processing.

[26]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[27]  Glenn D. Bergland,et al.  Numerical Analysis: A fast fourier transform algorithm for real-valued series , 1968, CACM.

[28]  S. Mallat A wavelet tour of signal processing , 1998 .

[29]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[30]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[31]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[32]  Daniel N. Rockmore,et al.  Efficient computation of Fourier inversion for finite groups , 1994, JACM.

[33]  Douglas L. Jones,et al.  On computing the discrete Hartley transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[34]  Jean-Bernard Martens The Hermite transform-applications , 1990, IEEE Trans. Acoust. Speech Signal Process..

[35]  Henk D. L. Hollmann,et al.  Implementation of "Split-radix" FFT algorithms for complex, real, and real symmetric data , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[37]  G. Steidl,et al.  A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms , 1991 .

[38]  S. Winograd,et al.  The multiplicative complexity of the Discrete Fourier Transform , 1984 .

[39]  José M. F. Moura,et al.  Algebraic Signal Processing Theory , 2006, ArXiv.

[40]  Giridhar D. Mandyam,et al.  The discrete Laguerre transform: derivation and applications , 1996, IEEE Trans. Signal Process..

[41]  Thomas Beth,et al.  On the Computational Complexity of the General Discrete Fourier Transform , 1987, Theor. Comput. Sci..

[42]  R. Bracewell The fast Hartley transform , 1984, Proceedings of the IEEE.