Topological phase structure of vector vortex beams.

The topological phase acquired by vector vortex optical beams is investigated. Under local unitary operations on their polarization and transverse degrees of freedom, the vector vortices can only acquire discrete geometric phase values, 0 or π, associated with closed paths belonging to different homotopy classes on the SO(3) manifold. These discrete values are demonstrated through interferometric measurements, and the spin-orbit mode separability is associated to the visibility of the interference patterns. The local unitary operations performed on the vector vortices involved both polarization and transverse mode transformations with birefringent wave plates and astigmatic mode converters. The experimental results agree with our theoretical simulations and generalize our previous results obtained with polarization transformations only.

[1]  A. Bloom Quantum Electronics , 1972, Nature.

[2]  Lixiang Chen,et al.  Single-photon spin-orbit entanglement violating a Bell-like inequality , 2010 .

[3]  M J Padgett,et al.  Poincaré-sphere equivalent for light beams containing orbital angular momentum. , 1999, Optics letters.

[4]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[5]  Robert J. C. Spreeuw Classical wave-optics analogy of quantum information processing , 2001 .

[6]  E. Sjöqvist,et al.  Quantal phase for nonmaximally entangled photons , 2000 .

[7]  A. Khoury,et al.  Fractional topological phase for entangled qudits. , 2010, Physical review letters.

[8]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[9]  R. Simon,et al.  Quantum Kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations , 1993 .

[10]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[11]  S. J. van Enk,et al.  Geometric phase, transformations of gaussian light beams and angular momentum transfer , 1993 .

[12]  P'erola Milman Phase dynamics of entangled qubits , 2006 .

[13]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  F. Gori Polarization basis for vortex beams. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  E. Sjöqvist Geometric phase for entangled spin pairs , 2000 .

[17]  G Leuchs,et al.  Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. , 2011, Physical review letters.

[18]  L. C. Kwek,et al.  Relation between geometric phases of entangled bipartite systems and their subsystems , 2003, quant-ph/0309130.

[19]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[20]  宅間 宏,et al.  Amnon Yariv: Quantum Electronics, John Wiley and Sons, Inc., New York, 1967, 478頁, 16×24cm, 5,980円. , 1968 .

[21]  R. Mosseri,et al.  Geometry of entangled states, Bloch spheres and Hopf fibrations , 2001, quant-ph/0108137.

[22]  E. Abramochkin,et al.  Beam transformations and nontransformed beams , 1991 .

[23]  W. LiMing,et al.  Representation of the SO(3) group by a maximally entangled state (4 pages) , 2004 .

[24]  C. Souza,et al.  Quantum key distribution without a shared reference frame , 2008 .

[25]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[26]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[27]  R. Spreeuw A Classical Analogy of Entanglement , 1998 .

[28]  D. Nolan,et al.  Higher order Pancharatnam-Berry phase and the angular momentum of light. , 2012, Physical review letters.

[29]  E. Sjöqvist Entanglement-induced geometric phase of quantum states , 2010 .

[30]  R E Williams,et al.  Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum. , 2003, Physical review letters.

[31]  C. Borges,et al.  Bell-like inequality for the spin-orbit separability of a laser beam , 2009, 0911.2440.

[32]  Ebrahim Karimi,et al.  Spin-orbit hybrid entanglement of photons and quantum contextuality , 2010, 1103.3962.

[33]  P. Milman,et al.  Topological phase for spin-orbit transformations on a laser beam , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[34]  C. Souza,et al.  A Michelson controlled-not gate with a single-lens astigmatic mode converter. , 2010, Optics express.

[35]  Ebrahim Karimi,et al.  Integrated multi vector vortex beam generator. , 2013, Optics express.

[36]  B. Saleh,et al.  Bell's measure in classical optical coherence , 2012, Nature Photonics.

[37]  Jian-Qi Zhang,et al.  Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic crystal cavity , 2010, 1011.6009.

[38]  R. Simon,et al.  Quantum Kinematic Approach to the Geometric Phase. I. General Formalism , 1993 .

[39]  L Aolita,et al.  Quantum communication without alignment using multiple-qubit single-photon states. , 2007, Physical review letters.

[40]  D. Suter,et al.  Experimental observation of a topological phase in the maximally entangled state of a pair of qubits , 2007, 0705.3566.

[41]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[42]  A. Khoury,et al.  Fractional topological phase on spatially encoded photonic qudits , 2013, 1301.5539.

[43]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[44]  P. Kurzynowski,et al.  Geometric phase: two triangles on the Poincaré sphere. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  A. Khoury,et al.  Three-qubit topological phase on entangled photon pairs , 2013, 1301.5538.

[46]  C. Ross Found , 1869, The Dental register.

[47]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[48]  Pérola Milman,et al.  Topological phase for entangled two-qubit states. , 2003, Physical review letters.