Topological phase structure of vector vortex beams.
暂无分享,去创建一个
[1] A. Bloom. Quantum Electronics , 1972, Nature.
[2] Lixiang Chen,et al. Single-photon spin-orbit entanglement violating a Bell-like inequality , 2010 .
[3] M J Padgett,et al. Poincaré-sphere equivalent for light beams containing orbital angular momentum. , 1999, Optics letters.
[4] S. Pancharatnam,et al. Generalized theory of interference, and its applications , 1956 .
[5] Robert J. C. Spreeuw. Classical wave-optics analogy of quantum information processing , 2001 .
[6] E. Sjöqvist,et al. Quantal phase for nonmaximally entangled photons , 2000 .
[7] A. Khoury,et al. Fractional topological phase for entangled qudits. , 2010, Physical review letters.
[8] A. Schawlow. Lasers , 2018, Acta Ophthalmologica.
[9] R. Simon,et al. Quantum Kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations , 1993 .
[10] J I Cirac,et al. Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.
[11] S. J. van Enk,et al. Geometric phase, transformations of gaussian light beams and angular momentum transfer , 1993 .
[12] P'erola Milman. Phase dynamics of entangled qubits , 2006 .
[13] J. P. Woerdman,et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[14] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[15] F. Gori. Polarization basis for vortex beams. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[16] E. Sjöqvist. Geometric phase for entangled spin pairs , 2000 .
[17] G Leuchs,et al. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. , 2011, Physical review letters.
[18] L. C. Kwek,et al. Relation between geometric phases of entangled bipartite systems and their subsystems , 2003, quant-ph/0309130.
[19] L. Marrucci,et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.
[20] 宅間 宏,et al. Amnon Yariv: Quantum Electronics, John Wiley and Sons, Inc., New York, 1967, 478頁, 16×24cm, 5,980円. , 1968 .
[21] R. Mosseri,et al. Geometry of entangled states, Bloch spheres and Hopf fibrations , 2001, quant-ph/0108137.
[22] E. Abramochkin,et al. Beam transformations and nontransformed beams , 1991 .
[23] W. LiMing,et al. Representation of the SO(3) group by a maximally entangled state (4 pages) , 2004 .
[24] C. Souza,et al. Quantum key distribution without a shared reference frame , 2008 .
[25] D. Nolan,et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.
[26] J. P. Woerdman,et al. Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .
[27] R. Spreeuw. A Classical Analogy of Entanglement , 1998 .
[28] D. Nolan,et al. Higher order Pancharatnam-Berry phase and the angular momentum of light. , 2012, Physical review letters.
[29] E. Sjöqvist. Entanglement-induced geometric phase of quantum states , 2010 .
[30] R E Williams,et al. Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum. , 2003, Physical review letters.
[31] C. Borges,et al. Bell-like inequality for the spin-orbit separability of a laser beam , 2009, 0911.2440.
[32] Ebrahim Karimi,et al. Spin-orbit hybrid entanglement of photons and quantum contextuality , 2010, 1103.3962.
[33] P. Milman,et al. Topological phase for spin-orbit transformations on a laser beam , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[34] C. Souza,et al. A Michelson controlled-not gate with a single-lens astigmatic mode converter. , 2010, Optics express.
[35] Ebrahim Karimi,et al. Integrated multi vector vortex beam generator. , 2013, Optics express.
[36] B. Saleh,et al. Bell's measure in classical optical coherence , 2012, Nature Photonics.
[37] Jian-Qi Zhang,et al. Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic crystal cavity , 2010, 1011.6009.
[38] R. Simon,et al. Quantum Kinematic Approach to the Geometric Phase. I. General Formalism , 1993 .
[39] L Aolita,et al. Quantum communication without alignment using multiple-qubit single-photon states. , 2007, Physical review letters.
[40] D. Suter,et al. Experimental observation of a topological phase in the maximally entangled state of a pair of qubits , 2007, 0705.3566.
[41] V. D'Ambrosio,et al. Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.
[42] A. Khoury,et al. Fractional topological phase on spatially encoded photonic qudits , 2013, 1301.5539.
[43] D. Bohm,et al. Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .
[44] P. Kurzynowski,et al. Geometric phase: two triangles on the Poincaré sphere. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.
[45] A. Khoury,et al. Three-qubit topological phase on entangled photon pairs , 2013, 1301.5538.
[46] C. Ross. Found , 1869, The Dental register.
[47] Jonathan A. Jones,et al. Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.
[48] Pérola Milman,et al. Topological phase for entangled two-qubit states. , 2003, Physical review letters.