Dynamic Microtubules Lead the Way for Spindle Positioning

Coordination between the asymmetric partitioning of cell-fate determinants and equal partitioning of genetic material is crucial to the generation of diverse cell types in a developing organism, and to the maintenance of genomic integrity. The emerging model is of a highly organized and dynamic cellular landscape, the form of which is defined by polarized signals within the cell. Cytoskeletal elements are necessary to generate this landscape and to provide motive forces for proper spindle positioning. These forces are generated by interactions between microtubules and the cell cortex.

[1]  E. O'Toole,et al.  Yeast Bim1p Promotes the G1-specific Dynamics of Microtubules , 1999, The Journal of cell biology.

[2]  Anthony Bretscher,et al.  Myosin V orientates the mitotic spindle in yeast , 2000, Nature.

[3]  V. Doye,et al.  A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing , 2001, The Journal of cell biology.

[4]  F. Chang,et al.  Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast , 2001, Current Biology.

[5]  Steven N. Hird,et al.  Specification of the anteroposterior axis in Caenorhabditis elegans. , 1996, Development.

[6]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[7]  S. Diez,et al.  The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. , 2003, Molecular cell.

[8]  B. Bowerman,et al.  The anaphase-promoting complex and separin are required for embryonic anterior-posterior axis formation. , 2002, Developmental cell.

[9]  B. Byrne,et al.  A role for regulated binding of p150Glued to microtubule plus ends in organelle transport , 2002, The Journal of cell biology.

[10]  A. Hyman,et al.  Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end–binding microtubule destabilizer , 2003, The Journal of cell biology.

[11]  J. McIntosh,et al.  Tea2p Is a Kinesin-like Protein Required to Generate Polarized Growth in Fission Yeast , 2000, The Journal of cell biology.

[12]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[13]  Anthony A. Hyman,et al.  Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo , 2001, Nature.

[14]  Jun Peng,et al.  Disruption of the Diaphanous-Related Formin Drf1 Gene Encoding mDia1 Reveals a Role for Drf3 as an Effector for Cdc42 , 2003, Current Biology.

[15]  A. Hall,et al.  Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKCζ , 2001, Cell.

[16]  A. Amon,et al.  A Mechanism for Coupling Exit from Mitosis to Partitioning of the Nucleus , 2000, Cell.

[17]  A. Chaudhuri,et al.  Molecular linkage underlying microtubule orientation toward cortical sites in yeast. , 2000, Science.

[18]  E. Salmon,et al.  Yeast Kar3 is a minus‐end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. , 1994, The EMBO journal.

[19]  M. Segal,et al.  Spindle Polarity in S. cerevisiae: MEN Can Tell , 2002, Cell cycle.

[20]  Y. Jan,et al.  Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity , 2003, Cell.

[21]  G. Borisy,et al.  Mode of centriole duplication and distribution , 1990, The Journal of cell biology.

[22]  M. Snyder,et al.  Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. , 2002, Genes & development.

[23]  K. Nasmyth,et al.  Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex , 2001, The EMBO journal.

[24]  Anthony A. Hyman,et al.  Caenorhabditis elegans TAC-1 and ZYG-9 Form a Complex that Is Essential for Long Astral and Spindle Microtubules , 2003, Current Biology.

[25]  J. Ahringer,et al.  Asymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo , 2003, Current Biology.

[26]  M. Rose,et al.  Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. , 2000, Molecular biology of the cell.

[27]  B. Byers,et al.  Duplication of spindle plaques and integration of the yeast cell cycle. , 1974, Cold Spring Harbor symposia on quantitative biology.

[28]  G. Seydoux,et al.  Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process , 2000, Nature.

[29]  J. Ahringer,et al.  Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos , 2001, Nature Cell Biology.

[30]  P. Nurse,et al.  Targeted movement of cell end factors in fission yeast , 2003, Nature Cell Biology.

[31]  J. Broach,et al.  The Molecular biology of the yeast saccharomyces, life cycle and inheritance , 1981 .

[32]  T. Davis,et al.  The Saccharomyces cerevisiae spindle pole body is a dynamic structure. , 2003, Molecular biology of the cell.

[33]  A. Schetter,et al.  Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases , 2003, Development.

[34]  D. Pellman,et al.  Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. , 2000, Science.

[35]  T. Mitchison,et al.  Mitosis: a history of division , 2001, Nature Cell Biology.

[36]  C. Faivre-Moskalenko,et al.  Dynamics of microtubule asters in microfabricated chambers: The role of catastrophes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Sawin,et al.  Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips , 2003, Nature.

[38]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[39]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[40]  J. Knoblich,et al.  Heterotrimeric G Proteins Direct Two Modes of Asymmetric Cell Division in the Drosophila Nervous System , 2001, Cell.

[41]  E. Salmon,et al.  Actomyosin-based Retrograde Flow of Microtubules in the Lamella of Migrating Epithelial Cells Influences Microtubule Dynamic Instability and Turnover and Is Associated with Microtubule Breakage and Treadmilling , 1997, The Journal of cell biology.

[42]  T. Mitchison,et al.  Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification , 2003, The Journal of cell biology.

[43]  J. Ahringer Control of cell polarity and mitotic spindle positioning in animal cells. , 2003, Current opinion in cell biology.

[44]  J. Labbé,et al.  PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans , 2003, Current Biology.

[45]  Lesilee S. Rose,et al.  PAR-dependent and geometry-dependent mechanisms of spindle positioning , 2003, The Journal of cell biology.

[46]  J. Cooper,et al.  Microtubule Interactions with the Cell Cortex Causing Nuclear Movements in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[47]  F. Zimmermann,et al.  Nuclear migration in Saccbaromyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein , 1991, Molecular and General Genetics MGG.

[48]  Charles Boone,et al.  Role of Formins in Actin Assembly: Nucleation and Barbed-End Association , 2002, Science.

[49]  M. Bienz Spindles cotton on to junctions, APC and EB1 , 2001, Nature Cell Biology.

[50]  A. Hyman,et al.  Structural Changes Accompanying Gtp Hydrolysis in Microtubules: Information from a Slowly Hydrolyzable Analogue Guanylyl-(c ,/3)-methylene-diphosphonate , 1995 .

[51]  T. Pawson,et al.  A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl , 2003, Nature Cell Biology.

[52]  Pierre Gönczy,et al.  TAC-1 and ZYG-9 Form a Complex that Promotes Microtubule Assembly in C. elegans Embryos , 2003, Current Biology.

[53]  M. Bornens,et al.  The Respective Contributions of the Mother and Daughter Centrioles to Centrosome Activity and Behavior in Vertebrate Cells , 2000, The Journal of cell biology.

[54]  P. Gönczy Mechanisms of spindle positioning: focus on flies and worms. , 2002, Trends in cell biology.

[55]  I. Macara,et al.  Structure of Cdc42 in a complex with the GTPase‐binding domain of the cell polarity protein, Par6 , 2003, The EMBO journal.

[56]  Jonathon Howard,et al.  The Distribution of Active Force Generators Controls Mitotic Spindle Position , 2003, Science.

[57]  H. Maekawa,et al.  Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions , 2003, The EMBO journal.

[58]  S. Reed,et al.  Kar9p-independent microtubule capture at Bud6p cortical sites primes spindle polarity before bud emergence in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[59]  D. Baillie,et al.  A Formin Homology Protein and a Profilin Are Required for Cytokinesis and Arp2/3-Independent Assembly of Cortical Microfilaments in C. elegans , 2002, Current Biology.

[60]  E. Salmon,et al.  A Metastable Intermediate State of Microtubule Dynamic Instability That Differs Significantly between Plus and Minus Ends , 1997, The Journal of cell biology.

[61]  S. Shaw,et al.  Nuclear and spindle dynamics in budding yeast. , 1998, Molecular biology of the cell.

[62]  J. White,et al.  The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. , 2000, Developmental biology.

[63]  P. Nurse,et al.  tea1 and the Microtubular Cytoskeleton Are Important for Generating Global Spatial Order within the Fission Yeast Cell , 1997, Cell.

[64]  P. Meluh,et al.  KAR3, a kinesin-related gene required for yeast nuclear fusion , 1990, Cell.

[65]  David Pellman,et al.  Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.

[66]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[67]  J. Grindlay,et al.  The Bub2p spindle checkpoint links nuclear migration with mitotic exit. , 2000, Molecular cell.

[68]  Pedro Carvalho,et al.  Determinants of S. cerevisiae Dynein Localization and Activation Implications for the Mechanism of Spindle Positioning , 2003, Current Biology.

[69]  J. Vonesch,et al.  PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression , 2003, Journal of Cell Science.

[70]  L. Cassimeris The oncoprotein 18/stathmin family of microtubule destabilizers. , 2002, Current opinion in cell biology.

[71]  B. Bowerman,et al.  The maternal gene spn-4 encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in early C. elegans embryos. , 2001, Development.

[72]  Pierre Gönczy,et al.  Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos , 2003, Science.

[73]  M. Farkašovský,et al.  Cortical Num1p Interacts with the Dynein Intermediate Chain Pac11p and Cytoplasmic Microtubules in Budding Yeast , 2001, The Journal of cell biology.

[74]  P. Brennwald Reversal of fortune. Do Rab GTPases act on the target membrane , 2000 .

[75]  Ira Herskowitz,et al.  Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question , 1992, Cell.

[76]  M. Hoyt Exit from Mitosis Spindle Pole Power , 2000, Cell.

[77]  R. Warrior,et al.  The Cytoplasmic Dynein and Kinesin Motors Have Interdependent Roles in Patterning the Drosophila Oocyte , 2002, Current Biology.

[78]  S. van den Heuvel,et al.  A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C elegans. , 2003, Genes & development.

[79]  J. Cooper,et al.  The Cortical Protein Num1p Is Essential for Dynein-Dependent Interactions of Microtubules with the Cortex , 2000, The Journal of cell biology.

[80]  P. Nurse,et al.  CLIP170-like tip1p Spatially Organizes Microtubular Dynamics in Fission Yeast , 2000, Cell.

[81]  Anthony A. Hyman,et al.  Dynamics and mechanics of the microtubule plus end , 2022 .

[82]  S. Leibler,et al.  Assembly and positioning of microtubule asters in microfabricated chambers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  B. Habermann,et al.  Stu2 Promotes Mitotic Spindle Elongation in Anaphase , 2001, The Journal of cell biology.

[84]  E. Salmon,et al.  Microtubule Dynamics from Mating through the First Zygotic Division in the Budding Yeast Saccharomyces cerevisiae , 1999, The Journal of cell biology.

[85]  E. Salmon,et al.  Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. , 2000, Molecular biology of the cell.

[86]  Yves Barral,et al.  Asymmetric Loading of Kar9 onto Spindle Poles and Microtubules Ensures Proper Spindle Alignment , 2003, Cell.

[87]  K. Kemphues,et al.  ZYG-9, A Caenorhabditis elegans Protein Required for Microtubule Organization and Function, Is a Component of Meiotic and Mitotic Spindle Poles , 1998, The Journal of cell biology.

[88]  J. Cooper,et al.  The Surveillance Mechanism of the Spindle Position Checkpoint in Yeast , 2001, The Journal of cell biology.

[89]  P. Nurse,et al.  Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton , 2002, The Journal of cell biology.

[90]  Anthony A. Hyman,et al.  SAS-4 Is a C. elegans Centriolar Protein that Controls Centrosome Size , 2003, Cell.

[91]  G. C. Rogers,et al.  Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle , 2002, The Journal of cell biology.

[92]  Sebastian A. Leidel,et al.  SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. , 2003, Developmental cell.

[93]  W. Saxton,et al.  Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes , 2002, Current Biology.

[94]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[95]  D. Shakes,et al.  Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. , 2000, Development.

[96]  J. Grindlay,et al.  Regulation of the Bfa1p–Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p , 2002, The Journal of cell biology.

[97]  E. Salmon,et al.  Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae , 1995, The Journal of cell biology.

[98]  George Oster,et al.  Polymer Motors: Pushing out the Front and Pulling up the Back , 2003, Current Biology.

[99]  L. Cassimeris,et al.  XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover , 1994, The Journal of cell biology.

[100]  E. Salmon,et al.  The differential roles of budding yeast Tem1p, Cdc15p, and Bub2p protein dynamics in mitotic exit. , 2004, Molecular biology of the cell.

[101]  E. Salmon,et al.  Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. , 2001, Molecular biology of the cell.

[102]  A. Hyman,et al.  XMAP215: a key component of the dynamic microtubule cytoskeleton. , 2002, Trends in cell biology.

[103]  J. D. De Mey,et al.  The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition. , 1990, European journal of cell biology.

[104]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[105]  A. Amon,et al.  MEN and SIN: what's the difference? , 2001, Nature Reviews Molecular Cell Biology.

[106]  J. Hegemann,et al.  Mal3, the Fission Yeast Homologue of the Human APC-interacting Protein EB-1 Is Required for Microtubule Integrity and the Maintenance of Cell Form , 1997, Journal of Cell Biology.

[107]  A. Amon,et al.  Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. , 2001, Molecular biology of the cell.

[108]  C. Hunter,et al.  Mutations in a beta-tubulin disrupt spindle orientation and microtubule dynamics in the early Caenorhabditis elegans embryo. , 2003, Molecular biology of the cell.

[109]  S. Shaw,et al.  Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud , 1997, The Journal of cell biology.

[110]  Polarization of the anterior – posterior axis of C . elegans is a microtubule-directed process , .

[111]  E. Salmon,et al.  The Minus End-Directed Motor Kar3 Is Required for Coupling Dynamic Microtubule Plus Ends to the Cortical Shmoo Tip in Budding Yeast , 2003, Current Biology.

[112]  David Pellman,et al.  Surfing on microtubule ends. , 2003, Trends in cell biology.

[113]  R. Vallee,et al.  Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization , 2001, Current Biology.

[114]  L. Tomáška,et al.  t-Loops in yeast mitochondria. , 2002, Mitochondrion.

[115]  Claudia J. Bode,et al.  beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. , 2002, Molecular biology of the cell.

[116]  A. Hyman,et al.  XMAP215 regulates microtubule dynamics through two distinct domains , 2001, The EMBO journal.

[117]  J. McIntosh,et al.  Minus-end-directed motion of kinesin–coated microspheres driven by microtubule depolymerization , 1995, Nature.

[118]  Timothy J Mitchison,et al.  EB1 targets to kinetochores with attached, polymerizing microtubules. , 2002, Molecular biology of the cell.

[119]  D. J. Clarke,et al.  Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast , 2000, The Journal of cell biology.

[120]  J. Ahringer,et al.  TAC-1, a Regulator of Microtubule Length in the C. elegans Embryo , 2003, Current Biology.

[121]  M. Kirschner,et al.  A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end , 1987, The Journal of cell biology.

[122]  M. Caplow,et al.  The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice [published erratum appears in J Cell Biol 1995 Apr;129(2):549] , 1994, The Journal of cell biology.

[123]  Y. Barral,et al.  Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables , 2003, The Journal of cell biology.

[124]  K. Miller,et al.  A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. , 2000, Genetics.

[125]  C. Rieder,et al.  Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells , 1990, The Journal of cell biology.

[126]  A. Hall,et al.  Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity , 2003, Nature.

[127]  S. Leibler,et al.  Dynamic instability of microtubules as an efficient way to search in space. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[128]  James Moseley,et al.  An actin nucleation mechanism mediated by Bni1 and Profilin , 2002, Nature Cell Biology.

[129]  A. Hyman,et al.  Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation , 2001, Current Biology.