Adaptive Inference for Change Points in High-Dimensional Data

In this article, we propose a class of test statistics for a change point in the mean of high-dimensional independent data. Our test integrates the U-statistic based approach in a recent work by Wa...

[1]  Arjun K. Gupta,et al.  Parametric Statistical Change Point Analysis , 2000 .

[2]  A. Rinaldo,et al.  Optimal change point detection and localization in sparse dynamic networks , 2018, The Annals of Statistics.

[3]  Hao Chen,et al.  Graph-based change-point detection , 2012, 1209.1625.

[4]  Kengo Kato,et al.  Central limit theorems and bootstrap in high dimensions , 2014, 1412.3661.

[5]  Diane J. Cook,et al.  A survey of methods for time series change point detection , 2017, Knowledge and Information Systems.

[6]  Wei Biao Wu,et al.  LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES , 2007, Econometric Theory.

[7]  L. Horváth,et al.  Change‐point detection in panel data , 2012 .

[8]  A. Aue,et al.  Structural breaks in time series , 2013 .

[9]  Farida Enikeeva,et al.  High-dimensional change-point detection with sparse alternatives , 2013, 1312.1900.

[10]  M. Jirak Uniform change point tests in high dimension , 2015, 1511.05333.

[11]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Hongzhe Li,et al.  Optimal Sparse Segment Identification With Application in Copy Number Variation Analysis , 2010, Journal of the American Statistical Association.

[13]  M. Cugmas,et al.  On comparing partitions , 2015 .

[14]  X. Shao,et al.  Testing for Change Points in Time Series , 2010 .

[15]  Tengyao Wang,et al.  High dimensional change point estimation via sparse projection , 2016, 1606.06246.

[16]  Lizhen Lin,et al.  Change-point detection in dynamic networks via graphon estimation , 2019, 1908.01823.

[17]  Kengo Kato,et al.  Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors , 2013 .

[18]  Ignacio N. Lobato Testing That a Dependent Process Is Uncorrelated , 2001 .

[19]  Wei Pan,et al.  An adaptive two-sample test for high-dimensional means , 2016, Biometrika.

[20]  Nancy R. Zhang,et al.  Detecting simultaneous changepoints in multiple sequences. , 2010, Biometrika.

[21]  Song-xi Chen,et al.  A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.

[22]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[23]  I. G. Zhurbenko,et al.  On higher spectral densities of stationary processes with mixing , 1975 .

[24]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[25]  David Siegmund,et al.  MODEL SELECTION FOR HIGH-DIMENSIONAL, MULTI-SEQUENCE CHANGE-POINT PROBLEMS , 2012 .

[26]  Piotr Fryzlewicz,et al.  Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.

[27]  Wei Biao Wu,et al.  Limit theorems for iterated random functions , 2004, Journal of Applied Probability.

[28]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[29]  X. Shao,et al.  A self‐normalized approach to confidence interval construction in time series , 2010, 1005.2137.

[30]  Haeran Cho,et al.  Change-point detection in panel data via double CUSUM statistic , 2016, 1611.08631.

[31]  Chao Gao,et al.  Minimax rates in sparse, high-dimensional change point detection , 2019, The Annals of Statistics.

[32]  X. Shao,et al.  Self-Normalization for Time Series: A Review of Recent Developments , 2015 .

[33]  Xiaohui Chen,et al.  Finite sample change point inference and identification for high‐dimensional mean vectors , 2017, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[34]  Pierre Perron,et al.  Dealing with Structural Breaks , 2005 .

[35]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[36]  L. Horváth,et al.  Darling–Erdős limit results for change-point detection in panel data , 2013 .

[37]  W. Pan,et al.  ASYMPTOTICALLY INDEPENDENT U-STATISTICS IN HIGH-DIMENSIONAL TESTING. , 2018, Annals of statistics.

[38]  X. Shao,et al.  Hypothesis testing for high-dimensional time series via self-normalization , 2020 .

[39]  Ting Zhang,et al.  Unsupervised Self-Normalized Change-Point Testing for Time Series , 2018 .