The neurobiology of opiate motivation.

Opiates are a highly addictive class of drugs that have been reported to possess both dopamine-dependent and dopamine-independent rewarding properties. The search for how, if at all, these distinct mechanisms of motivation are related is of great interest in drug addiction research. Recent electrophysiological, molecular, and behavioral work has greatly improved our understanding of this process. In particular, the signaling properties of GABA(A) receptors located on GABA neurons in the ventral tegmental area (VTA) appear to be crucial to understanding the interplay between dopamine-dependent and dopamine-independent mechanisms of opiate motivation.

[1]  M. Olmstead,et al.  The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. , 1997, Behavioral neuroscience.

[2]  G. Johnston GABAA receptor pharmacology. , 1996, Pharmacology & therapeutics.

[3]  S. Sesack,et al.  Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area , 2009, Journal of neuroscience research.

[4]  R. Wise,et al.  Brain dopamine and reward. , 1989, Annual review of psychology.

[5]  J. Deniau,et al.  Effects of stimulation of the frontal cortex on identified output VMT cells in the rat , 1979, Neuroscience Letters.

[6]  F. Bloom,et al.  Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats , 2004, Psychopharmacology.

[7]  J. Benson,et al.  BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression , 2001, The European journal of neuroscience.

[8]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[9]  M. Zastrow Opioid receptor regulation , 2007, NeuroMolecular Medicine.

[10]  J. Deniau,et al.  Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat , 1980, Brain Research.

[11]  W. Hevers,et al.  The diversity of GABAA receptors , 1998, Molecular Neurobiology.

[12]  K. Staley,et al.  Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport , 1999, The Journal of physiology.

[13]  A. Bonci,et al.  Opioid-Induced GABA Potentiation after Chronic Morphine Attenuates the Rewarding Effects of Opioids in the Ventral Tegmental Area , 2010, The Journal of Neuroscience.

[14]  J. Voipio,et al.  BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion , 2002, The Journal of cell biology.

[15]  S. Ikemoto,et al.  Regional Differences Within the Rat Ventral Tegmental Area for Muscimol Self-Infusions , 1998, Pharmacology Biochemistry and Behavior.

[16]  C. Blaha,et al.  Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Ikemoto,et al.  Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies , 1999, Behavioural Brain Research.

[18]  G. Uhl,et al.  Reduced Behavioral Effects of Cocaine in Heterozygous Brain-Derived Neurotrophic Factor (BDNF) Knockout Mice , 2003, Neuropsychopharmacology.

[19]  E. Jorgensen,et al.  EXP-1 is an excitatory GABA-gated cation channel , 2003, Nature Neuroscience.

[20]  A. Phillips,et al.  Dopaminergic substrates of amphetamine-induced place preference conditioning , 1982, Brain Research.

[21]  H. Haas,et al.  The action of Baclofen on neurons of the substantia nigra and of the ventral tegmental area , 1977, Brain Research.

[22]  S. Laviolette,et al.  Lesions of the Tegmental Pedunculopontine Nucleus Block the Rewarding Effects and Reveal the Aversive Effects of Nicotine in the Ventral Tegmental Area Materials and Methods , 2002 .

[23]  K. Kaila,et al.  Ionic basis of GABAA receptor channel function in the nervous system , 1994, Progress in Neurobiology.

[24]  Murtaza Z Mogri,et al.  Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward , 2010, Science.

[25]  K. Nader,et al.  Deprivation State Switches the Neurobiological Substrates Mediating Opiate Reward in the Ventral Tegmental Area , 1997, The Journal of Neuroscience.

[26]  K. Berridge,et al.  The neural basis of drug craving: An incentive-sensitization theory of addiction , 1993, Brain Research Reviews.

[27]  R. North,et al.  Opioids excite dopamine neurons by hyperpolarization of local interneurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  B. Nahed,et al.  Roles of the cation–chloride cotransporters in neurological disease , 2008, Nature Clinical Practice Neurology.

[29]  K. Kaila,et al.  Acetazolamide and midazolam act synergistically to inhibit neuropathic pain , 2010, PAIN.

[30]  R. Wise,et al.  Anatomically distinct opiate receptor fields mediate reward and physical dependence. , 1984, Science.

[31]  J. McGinty,et al.  A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats , 2007, The European journal of neuroscience.

[32]  R. Wise,et al.  The neurobiology of addiction , 2019, Annals of the New York Academy of Sciences.

[33]  J. Gaiarsa,et al.  GABA mediated excitation in immature rat CA3 hippocampal neurons , 1990, International Journal of Developmental Neuroscience.

[34]  Jennifer M. Mitchell,et al.  Midbrain Dopamine Neurons: Projection Target Determines Action Potential Duration and Dopamine D2 Receptor Inhibition , 2008, The Journal of Neuroscience.

[35]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[36]  T. Jhou,et al.  The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta , 2009, The Journal of comparative neurology.

[37]  D. van der Kooy,et al.  GABAA receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non‐dopaminergic neural motivational systems , 2001, The European journal of neuroscience.

[38]  Carol Young,et al.  GABA Type-A Activity Controls Its Own Developmental Polarity Switch in the Maturing Retina , 2005, The Journal of Neuroscience.

[39]  D. Wirtshafter,et al.  Localization of GABAB receptors in midbrain monoamine containing neurons in the rat , 2001, Brain Research Bulletin.

[40]  S. Henriksen,et al.  Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area , 2004, Nature Neuroscience.

[41]  V. Pickel,et al.  Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter , 1999, The Journal of comparative neurology.

[42]  M. McCarthy,et al.  Getting excited about GABA and sex differences in the brain , 2002, Trends in Neurosciences.

[43]  P. Kalivas Neurotransmitter regulation of dopamine neurons in the ventral tegmental area , 1993, Brain Research Reviews.

[44]  G. Albertini,et al.  Carbonic Anhydrase II in the Developing and Adult Human Brain , 2006, Journal of neuropathology and experimental neurology.

[45]  P. Kalivas,et al.  Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. , 1990, The Journal of pharmacology and experimental therapeutics.

[46]  K. Ballanyi,et al.  Disruption of KCC2 Reveals an Essential Role of K-Cl Cotransport Already in Early Synaptic Inhibition , 2001, Neuron.

[47]  Natalia Omelchenko,et al.  Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells , 2009, Synapse.

[48]  Elyssa B. Margolis,et al.  Nucleus Accumbens Medium Spiny Neurons Target Non-Dopaminergic Neurons in the Ventral Tegmental Area , 2011, The Journal of Neuroscience.

[49]  D. Alkon,et al.  Carbonic anhydrase gating of attention: memory therapy and enhancement. , 2002, Trends in pharmacological sciences.

[50]  V. Pickel,et al.  μ‐Opioid receptors in the ventral tegmental area are targeted to presynaptically and directly modulate mesocortical projection neurons , 2001, Synapse.

[51]  Elyssa B. Margolis,et al.  Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons , 2010, The Journal of Neuroscience.

[52]  Deborah A. Yurgelun-Todd,et al.  Neuropsychological Consequences of Opiate Use , 2007, Neuropsychology Review.

[53]  D. K. Berg,et al.  Sequential Interplay of Nicotinic and GABAergic Signaling Guides Neuronal Development , 2006, Science.

[54]  P. Kalivas,et al.  Autoradiographic localization of γ-aminobutyric acidA receptors within the ventral tegmental area , 2004, Neurochemical Research.

[55]  S. Sesack,et al.  Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area , 2005, The Journal of comparative neurology.

[56]  John T. Williams,et al.  Properties and Opioid Inhibition of Mesolimbic Dopamine Neurons Vary according to Target Location , 2006, The Journal of Neuroscience.

[57]  D. van der Kooy,et al.  The D2 receptor is critical in mediating opiate motivation only in opiate‐dependent and withdrawn mice , 2001, The European journal of neuroscience.

[58]  R. Wise,et al.  Neuroleptic-induced "anhedonia" in rats: pimozide blocks reward quality of food. , 1978, Science.

[59]  C. Holmes,et al.  GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus , 1995, The Journal of comparative neurology.

[60]  S. Sesack,et al.  Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area , 2009, The European journal of neuroscience.

[61]  S. Sesack,et al.  Ultrastructural relationships between terminals immunoreactive for enkephalin, GABA, or both transmitters in the rat ventral tegmental area , 1995, Brain Research.

[62]  S. Sesack,et al.  The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus , 2011, The Journal of comparative neurology.

[63]  H. Kalant Opium revisited: a brief review of its nature, composition, non-medical use and relative risks. , 1997, Addiction.

[64]  R. Wise Opiate reward: Sites and substrates , 1989, Neuroscience & Biobehavioral Reviews.

[65]  J. Paysan,et al.  Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[67]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[68]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[69]  Yves De Koninck,et al.  Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain , 2003, Nature.

[70]  G. Johnston,et al.  THE ‘ABC’ OF GABA RECEPTORS: A BRIEF REVIEW , 1999, Clinical and experimental pharmacology & physiology.

[71]  S. Henriksen,et al.  Electrophysiological Characterization of GABAergic Neurons in the Ventral Tegmental Area , 1998, The Journal of Neuroscience.

[72]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[73]  G. Elmer,et al.  The neurobiology of opiate reinforcement. , 1998, Critical reviews in neurobiology.

[74]  Herman Joseph,et al.  Opioids and the treatment of chronic pain: controversies, current status, and future directions. , 2008, Experimental and clinical psychopharmacology.

[75]  J. G. Edwards,et al.  The role of connexin‐36 gap junctions in alcohol intoxication and consumption , 2011, Synapse.

[76]  R. Palmiter,et al.  Morphine reward in dopamine-deficient mice , 2005, Nature.

[77]  R. Wise,et al.  Heroin reward is dependent on a dopaminergic substrate. , 1981, Life sciences.

[78]  Y. Shaham,et al.  A Single Infusion of Brain-Derived Neurotrophic Factor into the Ventral Tegmental Area Induces Long-Lasting Potentiation of Cocaine Seeking after Withdrawal , 2004, The Journal of Neuroscience.

[79]  K. Nader,et al.  Neuroleptics block high- but not low-dose heroin place preferences: further evidence for a two-system model of motivation. , 1994, Behavioral neuroscience.

[80]  K. Gysling,et al.  Morphine-induced activation of A10 dopamine neurons in the rat , 1983, Brain Research.

[81]  C. Gravel,et al.  BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain , 2005, Nature.

[82]  D. P. O'Brien,et al.  Inhibition of non-dopamine cells in the ventral tegmental area by benzodiazepines: relationship to A10 dopamine cell activity. , 1987, European journal of pharmacology.

[83]  K. Nader,et al.  The motivation produced by morphine and food is isomorphic: Approaches to specific motivational stimuli are learned , 1994, Psychobiology.

[84]  M. Morales,et al.  Glutamatergic neurons are present in the rat ventral tegmental area , 2007, The European journal of neuroscience.

[85]  Yosef Yarom,et al.  GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity , 1997, Nature.

[86]  G. Koob,et al.  The Neurobiology of Addiction , 1997, Alcohol health and research world.

[87]  A. Ettenberg,et al.  Intra-ventral tegmental area heroin-induced place preferences in rats are potentiated by peripherally administered alprazolam , 2005, Pharmacology Biochemistry and Behavior.

[88]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[89]  G G Turrigiano,et al.  Brain-Derived Neurotrophic Factor Mediates the Activity-Dependent Regulation of Inhibition in Neocortical Cultures , 1997, The Journal of Neuroscience.

[90]  Y. Ridderstråle,et al.  Membrane-associated carbonic anhydrase activity in the brain of CA II-deficient mice , 2000, Journal of neurocytology.

[91]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[92]  S. Sesack,et al.  Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources , 2007, Neuroscience.

[93]  G. Johnston GABA Receptor Pharmacology , 1995 .

[94]  D. van der Kooy,et al.  Ventral Tegmental Area BDNF Induces an Opiate-Dependent–Like Reward State in Naïve Rats , 2009, Science.

[95]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[96]  J. Voipio,et al.  The role of bicarbonate in GABAA receptor‐mediated IPSPs of rat neocortical neurones. , 1993, The Journal of physiology.

[97]  L. Vanderschuren,et al.  Opioids, reward and addiction: An encounter of biology, psychology, and medicine. , 1999, Pharmacological reviews.

[98]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[99]  D. Alkon,et al.  Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. , 2001, The Journal of pharmacology and experimental therapeutics.

[100]  G. Koob,et al.  Low doses of methylnaloxonium in the nucleus accumbens antagonize hyperactivity induced by heroin in the rat , 1985, Pharmacology Biochemistry and Behavior.

[101]  D. Kooy,et al.  Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area , 2003, Molecular Psychiatry.

[102]  R. Wise,et al.  Effects of Pedunculopontine Tegmental Nucleus Lesions on Responding for Intravenous Heroin under Different Schedules of Reinforcement , 1998, The Journal of Neuroscience.

[103]  R. Wise,et al.  Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. , 1975, Science.

[104]  R. Nicoll,et al.  GABA Generates Excitement , 2003, Neuron.

[105]  D. van der Kooy,et al.  GABAA receptors signal bidirectional reward transmission from the ventral tegmental area to the tegmental pedunculopontine nucleus as a function of opiate state , 2004, The European journal of neuroscience.

[106]  D. van der Kooy,et al.  A single brain stem substrate mediates the motivational effects of both opiates and food in nondeprived rats but not in deprived rats. , 1992, Behavioral neuroscience.

[107]  M. McCarthy,et al.  Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Satoh,et al.  Molecular biology of the opioid receptors: structures, functions and distributions , 1995, Neuroscience Research.

[109]  V. Pickel,et al.  Plasmalemmal μ‐opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area , 2001 .

[110]  B. Wainer,et al.  Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies , 1992, The Journal of comparative neurology.

[111]  G. Koob,et al.  Both GABAB receptor agonist and antagonists decreased brain stimulation reward in the rat , 2001, Neuropharmacology.

[112]  R. Kanjhan OPIOIDS AND PAIN , 1995, Clinical and experimental pharmacology & physiology.

[113]  E. T. Rolls,et al.  The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade , 2004, Psychopharmacologia.

[114]  M. Hirata,et al.  Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation , 2007, The Journal of Neuroscience.

[115]  F. Stephenson,et al.  Decreased expression of GABAA receptor alpha6 and beta3 subunits in stargazer mutant mice: a possible role for brain-derived neurotrophic factor in the regulation of cerebellar GABAA receptor expression? , 1998, Brain research. Molecular brain research.

[116]  D. Prince,et al.  Outward chloride/cation co-transport in mammalian cortical neurons , 1988, Neuroscience Letters.

[117]  W. Hevers,et al.  The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. , 1998, Molecular neurobiology.

[118]  D. van der Kooy,et al.  GABAA receptors mediate the opposing roles of dopamine and the tegmental pedunculopontine nucleus in the motivational effects of ethanol , 2009, The European journal of neuroscience.

[119]  D. Roberts,et al.  Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens , 1985, Pharmacology Biochemistry and Behavior.

[120]  S. Ikemoto,et al.  GABAA Receptor Blockade in the Anterior Ventral Tegmental Area Increases Extracellular Levels of Dopamine in the Nucleus Accumbens of Rats , 1997, Journal of neurochemistry.

[121]  K. Befort,et al.  Reward processing by the opioid system in the brain. , 2009, Physiological reviews.

[122]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[123]  P. Kalivas,et al.  Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. , 1993, The Journal of pharmacology and experimental therapeutics.

[124]  P. Kalivas,et al.  Autoradiographic localization of μ-opioid and neurotensin receptors within the mesolimbic dopamine system , 1989, Brain Research.

[125]  M. E. Lewis,et al.  Anatomy of CNS opioid receptors , 1988, Trends in Neurosciences.

[126]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.

[127]  E. V. Bockstaele,et al.  GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain , 1995, Brain Research.

[128]  G. Di Chiara,et al.  Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. , 1985, European journal of pharmacology.