Anytime Approximation in Probabilistic Databases via Scaled Dissociations
暂无分享,去创建一个
Floris Geerts | Wolfgang Gatterbauer | Martin Theobald | Peter Ivanov | Maarten Van den Heuvel | Floris Geerts | M. Theobald | Wolfgang Gatterbauer | P. Ivanov | M. V. D. Heuvel
[1] Dan Suciu,et al. Probabilistic Databases with MarkoViews , 2012, Proc. VLDB Endow..
[2] Guy Van den Broeck,et al. Query Processing on Probabilistic Data: A Survey , 2017, Found. Trends Databases.
[3] Bart Selman,et al. Model Counting , 2021, Handbook of Satisfiability.
[4] Lise Getoor,et al. Exploiting shared correlations in probabilistic databases , 2008, Proc. VLDB Endow..
[5] Dan Olteanu,et al. Aggregation in Probabilistic Databases via Knowledge Compilation , 2012, Proc. VLDB Endow..
[6] Dan Suciu,et al. Probabilistic Event Extraction from RFID Data , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[7] Prasoon Goyal,et al. Probabilistic Databases , 2009, Encyclopedia of Database Systems.
[8] Martin Theobald,et al. Top-k query processing in probabilistic databases with non-materialized views , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).
[9] Dan Suciu,et al. Approximate Lifted Inference with Probabilistic Databases , 2014, Proc. VLDB Endow..
[10] Dan Suciu,et al. Oblivious bounds on the probability of boolean functions , 2014, ACM Trans. Database Syst..
[11] Christopher Ré,et al. Efficient Top-k Query Evaluation on Probabilistic Data , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[12] Christopher Ré,et al. Approximate lineage for probabilistic databases , 2008, Proc. VLDB Endow..
[13] Richard M. Karp,et al. Monte-Carlo Approximation Algorithms for Enumeration Problems , 1989, J. Algorithms.
[14] Christopher Ré,et al. Query Evaluation on Probabilistic Databases , 2006, IEEE Data Eng. Bull..
[15] Lise Getoor,et al. Read-once functions and query evaluation in probabilistic databases , 2010, Proc. VLDB Endow..
[16] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[17] Pierre Marquis,et al. A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..
[18] Christopher Ré,et al. Managing Probabilistic Data with MystiQ : The Can-Do , the Could-Do , and the Can ’ t-Do ? , 2008 .
[19] Mark S. Boddy,et al. Anytime Problem Solving Using Dynamic Programming , 1991, AAAI.
[20] Adnan Darwiche. Relax, Compensate and Then Recover: A Theory of Anytime, Approximate Inference , 2010, JELIA.
[21] Christopher De Sa,et al. Incremental Knowledge Base Construction Using DeepDive , 2015, The VLDB Journal.
[22] Jian Li,et al. Sensitivity analysis and explanations for robust query evaluation in probabilistic databases , 2011, SIGMOD '11.
[23] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[24] Wei Zhang,et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.
[25] Fabian M. Suchanek,et al. YAGO3: A Knowledge Base from Multilingual Wikipedias , 2015, CIDR.
[26] Michael Rice,et al. A Survey of Static Variable Ordering Heuristics for Efficient BDD / MDD Construction , 2008 .
[27] Jennifer Widom,et al. Databases with uncertainty and lineage , 2008, The VLDB Journal.
[28] Adnan Darwiche,et al. On probabilistic inference by weighted model counting , 2008, Artif. Intell..
[29] Dan Olteanu,et al. On the optimal approximation of queries using tractable propositional languages , 2011, ICDT '11.
[30] Dan Olteanu,et al. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[31] Dan Olteanu,et al. Secondary-storage confidence computation for conjunctive queries with inequalities , 2009, SIGMOD Conference.
[32] Dan Suciu,et al. The dichotomy of probabilistic inference for unions of conjunctive queries , 2012, JACM.
[33] Christopher Ré,et al. MYSTIQ: a system for finding more answers by using probabilities , 2005, SIGMOD '05.
[34] Shlomo Zilberstein,et al. Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..
[35] Dan Olteanu,et al. SPROUT: Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.
[36] Haixun Wang,et al. Probase: a probabilistic taxonomy for text understanding , 2012, SIGMOD Conference.
[37] Norbert Fuhr,et al. A probabilistic relational algebra for the integration of information retrieval and database systems , 1997, TOIS.
[38] Dan Suciu,et al. Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.
[39] Pedro M. Domingos,et al. Probabilistic theorem proving , 2011, UAI.
[40] Miguel Á. Carreira-Perpiñán,et al. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application , 2013, ArXiv.
[41] CACM Staff,et al. What about statistical relational learning? , 2015, Commun. ACM.
[42] Serge Abiteboul,et al. Foundations of Databases , 1994 .
[43] Dan Olteanu,et al. Approximate confidence computation in probabilistic databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[44] Dan Olteanu,et al. Anytime approximation in probabilistic databases , 2013, The VLDB Journal.
[45] Dan Olteanu,et al. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases , 2008, SUM.
[46] Dan Suciu,et al. Dissociation and propagation for approximate lifted inference with standard relational database management systems , 2013, The VLDB Journal.
[47] Henry A. Kautz,et al. Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.