Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work, we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

[1]  Stig K. Andersen,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[2]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[3]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[4]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[5]  Eric Horvitz,et al.  Restart Policies with Dependence among Runs: A Dynamic Programming Approach , 2002, CP.

[6]  Ole J. Mengshoel,et al.  Understanding the role of noise in stochastic local search: Analysis and experiments , 2008, Artif. Intell..

[7]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[8]  Rina Dechter,et al.  Mini-buckets: A general scheme for bounded inference , 2003, JACM.

[9]  Martin J. Wainwright,et al.  Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.

[10]  Jun Gu,et al.  Algorithms for the satisfiability (SAT) problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[11]  Kristian G. Olesen,et al.  HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems , 1989, IJCAI.

[12]  Thomas Stützle,et al.  Efficient Stochastic Local Search for MPE Solving , 2005, IJCAI.

[13]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[14]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[15]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[16]  Panos M. Pardalos,et al.  Satisfiability Problem: Theory and Applications , 1997 .

[17]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[18]  Andrew J. Parkes,et al.  Tuning Local Search for Satisfiability Testing , 1996, AAAI/IAAI, Vol. 1.

[19]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[20]  Ian Witten,et al.  Data Mining , 2000 .

[21]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[22]  David Maxwell Chickering,et al.  A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[23]  David C. Wilkins,et al.  Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks , 2011, Journal of Automated Reasoning.

[24]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[25]  David C. Wilkins,et al.  Efficient Bayesian Network Inference: Genetic Algorithms, Stochastic Local Search, and Abstraction , 1999 .

[26]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..

[27]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[28]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[29]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[30]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.

[31]  Janet A. Sniezek,et al.  CoRAVEN: modeling and design of a multimedia intelligent infrastructure for collaborative intelligence analysis , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[32]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[33]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[34]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[35]  Holger H. Hoos,et al.  A mixture-model for the behaviour of SLS algorithms for SAT , 2002, AAAI/IAAI.

[36]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[37]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[38]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[39]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.

[40]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[41]  Ashraf M. Abdelbar,et al.  Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..

[42]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[44]  Rina Dechter,et al.  Stochastic local search for Bayesian network , 1999, AISTATS.

[45]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[46]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[47]  Thomas Stützle,et al.  Towards a Characterisation of the Behaviour of Stochastic Local Search Algorithms for SAT , 1999, Artif. Intell..

[48]  R. Dechter,et al.  Stochastic Local Search for Bayesian Networks , 1999 .

[49]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..