Critical behavior of three-dimensional disordered Potts models with many states

We study the 3D Disordered Potts Model with p = 5 and p = 6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower p values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.

[1]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[2]  Statics and dynamics of the ten-state nearest-neighbour Potts glass on the simple-cubic lattice , 2002, cond-mat/0211195.

[3]  Statics and dynamics of the ten-state mean-field Potts glass model: a Monte Carlo study , 2001, cond-mat/0106314.

[4]  Andrea Pelissetto,et al.  Critical behavior of three-dimensional Ising spin glass models , 2008, 0809.3329.

[5]  Giorgio Parisi,et al.  Glassy Potts model: A disordered Potts model without a ferromagnetic phase , 1999 .

[6]  H. Nishimori,et al.  Gauge-invariant frustrated Potts spin-glass , 1983 .

[7]  The High Temperature Dynamics of a mean field Potts glass , 2001, cond-mat/0104355.

[8]  A. Maiorano,et al.  Weak first-order transition in the three-dimensional site-diluted Ising antiferromagnet in a magnetic field , 2007, 0705.1517.

[9]  Giorgio Parisi,et al.  Effects of the random number generator on computer simulations , 1985 .

[10]  E. Marinari,et al.  Critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions , 2007, 0710.4246.

[11]  L. A. Fernandez,et al.  Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis , 2009, 0905.0322.

[12]  Evidence against a glass transition in the 10-state short-range Potts glass , 2002, cond-mat/0202232.

[13]  M. Picco,et al.  Phase diagram and critical exponents of a Potts gauge glass. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  E. Marinari,et al.  Optimized monte carlo methods , 1996, cond-mat/9612010.

[15]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[16]  S. F. Schifano,et al.  Spin glass phase in the four-state three-dimensional Potts model , 2008, 0812.1287.

[17]  Giorgio Parisi,et al.  Numerical Simulations of Spin Glass Systems , 1997 .

[18]  T. R. Kirkpatrick,et al.  Stable and metastable states in mean-field Potts and structural glasses. , 1987, Physical review. B, Condensed matter.

[19]  Helmut G. Katzgraber,et al.  Universality in three-dimensional Ising spin glasses: A Monte Carlo study , 2006, cond-mat/0602212.

[20]  Helmut G. Katzgraber,et al.  Critical behavior of the three- and ten-state short-range Potts glass: A Monte Carlo study , 2006 .

[21]  High-temperature series analysis of the p-state Potts glass model on d-dimensional hypercubic lattices , 1999 .

[22]  Kanter,et al.  Mean-field theory of the Potts glass. , 1985, Physical review letters.

[23]  Florent de Dinechin,et al.  Parameterized floating-point logarithm and exponential functions for FPGAs , 2007, Microprocess. Microsystems.

[24]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[25]  Denis Navarro,et al.  Simulating spin systems on IANUS, an FPGA-based computer , 2007, Comput. Phys. Commun..

[26]  D. Sherrington,et al.  The curious case of the Potts spin glass , 1983 .

[27]  V. Martin-Mayor,et al.  New universality class in three dimensions?: the antiferromagnetic RP2 model , 1995, hep-lat/9511003.

[28]  D. Sherrington,et al.  Spin glass, ferromagnetic and mixed phases in the disordered Potts model , 1983 .