Visual odometer for pedestrian navigation

This paper presents a visual odometer system using stereo cameras for pedestrian navigation. A novel method for pedestrian navigation based on the knowledge of gait analysis and robust ego-motion estimation is proposed. Two major problems of implementing the system on a pedestrian are stated. Firstly, the features collected from cameras attached on a walking pedestrian normally have winding trajectory resulting in inaccurate tracking. Secondly, the observed object moving independently leads to incorrect ego-motion estimation. Using gait analysis, capturing images at the same stage of the walking cycle produces a less winding trajectory that allows tracking without stabilizing the images. Robust ego motion is also introduced to eliminate outliers that are independently moving features, mismatched features in the stereo matching step and incorrectly assigned features in the tracking step. Data processing techniques including corner detection, stereo matching, triangulation, tracking, and ego-motion estimation are employed. The outcome is the estimated incremental ego motion of the stereo cameras. The approach not only enables the system to operate on walking users but also improves the accuracy of ego-motion estimation.

[1]  F. Cecelja,et al.  The Brunel Navigation System for Blind , 2000 .

[2]  Manolis I. A. Lourakis,et al.  Qualitative detection of 3D motion discontinuities , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[3]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  Ronald Azuma,et al.  Hybrid inertial and vision tracking for augmented reality registration , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[6]  David Suter,et al.  Visual tracking with automatic motion model switching , 2001, Pattern Recognit..

[7]  Y. Bar-Shalom,et al.  Topography-based VS-IMM estimator for large-scale ground target tracking , 1999 .

[8]  Radu Horaud,et al.  Motion-Egomotion Discrimination and Motion Segmentation from Image-Pair Streams , 2000, Comput. Vis. Image Underst..

[9]  R. Jirawimut,et al.  A method for dead reckoning parameter correction in pedestrian navigation system , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[10]  Penny Probert Smith,et al.  A stereo vision-based aid for the visually impaired , 1998, Image Vis. Comput..

[11]  Cor J. Veenman,et al.  A fast and robust point tracking algorithm , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[12]  Philip H. S. Torr,et al.  Statistical detection of independent movement from a moving camera , 1993, Image Vis. Comput..

[13]  Michael Brady,et al.  Vision-based Detection of Kerbs and Steps , 1997, BMVC.

[14]  Olivier D. Faugeras,et al.  Three-dimensional motion computation and object segmentation in a long sequence of stereo frames , 1992, International Journal of Computer Vision.

[15]  P. Ptasinski,et al.  Brunel inverse DGPS positioning system , 2001 .

[16]  Ronald Azuma,et al.  A motion-stabilized outdoor augmented reality system , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[17]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[18]  Stephen Se Zebra-crossing detection for the partially sighted , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[19]  V. Garaj The Brunel Navigation System for Blind: Determination of the Appropriate Position to Mount External GPS Antenna on the User's Body , 2001 .

[20]  Clark F. Olson,et al.  Stereo ego-motion improvements for robust rover navigation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[21]  P. Ptasinski,et al.  Integrated DGPS and Dead Reckoning for A Pedestrian Navigation System in Signal Blocked Environments , 2000 .

[22]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[24]  Jun-Ho Oh,et al.  Recursive resolving algorithm for multiple stereo and motion matches , 1997, Image Vis. Comput..

[25]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..