Mathematisches Forschungsinstitut Oberwolfach Modern Nonparametric Statistics: Going beyond Asymptotic Minimax
暂无分享,去创建一个
Iain M. Johnstone | Lucien Birgé | Vladimir Spokoiny | I. Johnstone | L. Birge | V. Spokoiny | Organised By | Berlin | L. Birgé | Iain M Paris | Stanford Vladimir Johnstone | Spokoiny
[1] H. Robbins. An Empirical Bayes Approach to Statistics , 1956 .
[2] B. Efron,et al. Empirical Bayes on vector observations: An extension of Stein's method , 1972 .
[3] C. L. Mallows. Some comments on C_p , 1973 .
[4] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[5] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[6] H. Robbins. Asymptotically Subminimax Solutions of Compound Statistical Decision Problems , 1985 .
[7] R. DeVore,et al. Degree of Adaptive Approximation , 1990 .
[8] O. Lepskii. On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .
[9] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[10] A. Kneip. Ordered Linear Smoothers , 1994 .
[11] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[12] M. Nussbaum. Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .
[13] D. Donoho. CART AND BEST-ORTHO-BASIS: A CONNECTION' , 1997 .
[14] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[15] B. Vidakovic,et al. Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .
[16] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[17] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[18] Colin L. Mallows,et al. Some Comments on Cp , 2000, Technometrics.
[19] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[20] Jean Jacod,et al. Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .
[21] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[22] S. Geer,et al. Adaptive estimation with soft thresholding penalties , 2002 .
[23] M. Nussbaum,et al. Asymptotic equivalence for nonparametric regression , 2002 .
[24] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[25] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[26] Jiashun Jin. Detecting and estimating sparse mixtures , 2003 .
[27] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[28] I. Johnstone,et al. Periodic boxcar deconvolution and diophantine approximation , 2004, math/0503663.
[29] D. Donoho,et al. Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.
[30] Gerard Kerkyacharian,et al. Wavelet deconvolution in a periodic setting , 2004 .
[31] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[32] Lan Zhang. Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.
[33] I. Johnstone,et al. Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.
[34] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[35] Markus Reiss,et al. Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.
[36] A. Caponnetto. Optimal Rates for Regularization Operators in Learning Theory , 2006 .
[37] L. Cavalier,et al. Risk hull method and regularization by projections of ill-posed inverse problems , 2006, math/0611228.
[38] N. Shephard,et al. Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .
[39] A. Tsybakov,et al. Linear and convex aggregation of density estimators , 2006, math/0605292.
[40] L. Birge,et al. Model selection via testing: an alternative to (penalized) maximum likelihood estimators , 2006 .
[41] Jean Jacod,et al. Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .
[42] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[43] Karim Lounici. Generalized mirror averaging and D-convex aggregation , 2007 .
[44] Peter Bühlmann,et al. Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm , 2007, J. Mach. Learn. Res..
[45] P. Massart,et al. Minimal Penalties for Gaussian Model Selection , 2007 .
[46] A. Munk,et al. Non‐parametric confidence bands in deconvolution density estimation , 2007 .
[47] F. Comte,et al. Adaptive estimation of the conditional density in presence of censoring. , 2007 .
[48] Cristina Butucea,et al. Sharp Optimality in Density Deconvolution with Dominating Bias. II , 2008 .
[49] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[50] A. V. D. Vaart,et al. Nonparametric Bayesian model selection and averaging , 2008, 0802.0069.
[51] Malay Ghosh,et al. Theoretical measures of relative performance of classifiers for high dimensional data with small sample sizes , 2008 .
[52] D. Donoho,et al. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak , 2008, Proceedings of the National Academy of Sciences.
[53] F. Comte,et al. Adaptive estimation of the conditional intensity of marker-dependent counting processes , 2008, 0810.4263.
[54] Lucien Birg'e. Model selection for density estimation with L2-loss , 2008, 0808.1416.
[55] Jiashun Jin,et al. Feature selection by higher criticism thresholding achieves the optimal phase diagram , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[56] A. Goldenshluger. A universal procedure for aggregating estimators , 2007, 0704.2500.
[57] Axel Munk,et al. Nonparametric Estimation of the Volatility Function in a High-Frequency Model corrupted by Noise , 2009, 0908.3163.
[58] Francis R. Bach,et al. Data-driven calibration of linear estimators with minimal penalties , 2009, NIPS.
[59] Yu. I. Ingster,et al. Classification of sparse high-dimensional vectors , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[60] M. Lerasle. Optimal model selection in density estimation , 2009, 0910.1654.
[61] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[62] R. Nickl,et al. Uniform limit theorems for wavelet density estimators , 2008, 0805.1406.
[63] N. Akakpo. Estimation adaptative par sélection de partitions en rectangles dyadiques , 2009 .
[64] Van Der Vaart,et al. Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.
[65] Pascal Massart,et al. Data-driven Calibration of Penalties for Least-Squares Regression , 2008, J. Mach. Learn. Res..
[66] Jiashun Jin,et al. Impossibility of successful classification when useful features are rare and weak , 2009, Proceedings of the National Academy of Sciences.
[67] M. Maathuis,et al. Estimating high-dimensional intervention effects from observational data , 2008, 0810.4214.
[68] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[69] Wenhua Jiang,et al. General maximum likelihood empirical Bayes estimation of normal means , 2009, 0908.1709.
[70] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[71] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[72] F. Comte,et al. Minimax estimation of the conditional cumulative distribution function , 2010 .
[73] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[74] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[75] A. Tsybakov,et al. Exponential Screening and optimal rates of sparse estimation , 2010, 1003.2654.
[76] R. Nickl,et al. CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.
[77] Emmanuel J. Candès,et al. Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.
[78] Peter Bühlmann,et al. Predicting causal effects in large-scale systems from observational data , 2010, Nature Methods.
[79] Gilles Blanchard,et al. Kernel Partial Least Squares is Universally Consistent , 2010, AISTATS.
[80] F. Comte,et al. Conditional mean residual life estimation , 2011 .
[81] C. Lacour,et al. Inhomogeneous and Anisotropic Conditional Density Estimation from Dependent Data , 2011 .
[82] R. Nickl,et al. GLOBAL UNIFORM RISK BOUNDS FOR WAVELET DECONVOLUTION ESTIMATORS , 2011, 1103.1489.
[83] Harrison H. Zhou,et al. MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .
[84] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[85] E. Mammen,et al. Nonparametric regression with nonparametrically generated covariates , 2012, 1207.5594.
[86] D. Donoho,et al. Minimax risk over / p-balls for / q-error , 2022 .