Incident Wavelength Resolved Resonant SERS on Au Sphere Segment Void (SSV) Arrays

Sphere segment void (SSV) arrays allow the reproducible engineering of plasmon-polariton modes from the near-infrared to the ultraviolet through the tuning of the void height and diameter. The wavelength dependence of surface-enhanced Raman scattering (SERS) can then in principle be controlled by selecting these parameters. Using 4-mercaptopyridine as a covalently bonded nonresonant molecular probe, we report a detailed study of such wavelength dependence of SERS in Au SSV arrays as a function of void diameter and height. We conclude that the SERS mechanism on SSV arrays depends on the plasmonic properties of the substrates and also that additional effects contribute significantly to the observed enhancement including a chemical contribution related to the molecular probe and a nanostructuring induced surface plasmon localization existent for the smaller cavity dimensions.

[1]  J. Baumberg,et al.  Sculpted substrates for SERS. , 2006, Faraday discussions.

[2]  J. Baumberg,et al.  Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. , 2006, Optics express.

[3]  P. Bartlett,et al.  SERS-melting: a new method for discriminating mutations in DNA sequences. , 2008, Journal of the American Chemical Society.

[4]  J. Baumberg,et al.  Quantitative electrochemical SERS of flavin at a structured silver surface. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Philip N. Bartlett,et al.  Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates , 2000 .

[6]  J. Baumberg,et al.  Relating SERS Intensity to Specific Plasmon Modes on Sphere Segment Void Surfaces , 2009 .

[7]  G. Usaj,et al.  From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. , 2011, ACS nano.

[8]  V. Flexer,et al.  Wired-enzyme core-shell Au nanoparticle biosensor. , 2008, Journal of the American Chemical Society.

[9]  P. Etchegoin,et al.  Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. , 2006, The journal of physical chemistry. B.

[10]  J. Baumberg,et al.  Dressing plasmons in particle-in-cavity architectures , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[11]  M. C. Netti,et al.  Confined plasmons in metallic nanocavities. , 2001, Physical review letters.

[12]  J. Baumberg,et al.  Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. , 2005, Physical review letters.

[13]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[14]  Edgar Voges,et al.  Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures , 2000 .

[15]  Jeremy J. Baumberg,et al.  Understanding Plasmons in Nanoscale Voids , 2007 .

[16]  Jeremy J Baumberg,et al.  Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. , 2005, Nano letters.

[17]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[18]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[19]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[20]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[21]  V. Flexer,et al.  Redox molecule based SERS sensors. , 2009, Physical chemistry chemical physics : PCCP.

[22]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[23]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[24]  Jeremy J. Baumberg,et al.  Localized and delocalized plasmons in metallic nanovoids , 2006 .

[25]  R. Forster,et al.  Regio-selective decoration of nanocavity metal arrays: contributions from localized and delocalized plasmons to surface enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[26]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[27]  Robert C. Maher,et al.  New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS) , 2003 .

[28]  P. Etchegoin,et al.  SERS in PAH-Os and gold nanoparticle self-assembled multilayers. , 2005, The Journal of chemical physics.

[29]  R. Maher,et al.  Single molecule photo-bleaching observed by surface enhanced resonant Raman scattering (SERRS) , 2002 .