Phototunable diarylethene microcrystalline surfaces: lotus and petal effects upon wetting.

[1]  Y. Liu,et al.  Towards a tunable and switchable water adhesion on a TiO(2) nanotube film with patterned wettability. , 2009, Chemical communications.

[2]  S. Yokojima,et al.  Photo-induced reversible topographical changes of photochromic dithienylethene microcrystalline surfaces , 2009 .

[3]  Aaron Wheeler,et al.  Putting Electrowetting to Work , 2008, Science.

[4]  Lei Jiang,et al.  Tunable Adhesive Superhydrophobic Surfaces for Superparamagnetic Microdroplets , 2008 .

[5]  S. Yokojima,et al.  Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light , 2008 .

[6]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[7]  Lei Jiang,et al.  Petal effect: a superhydrophobic state with high adhesive force. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[8]  S. Yokojima,et al.  Formation mechanism of fractal structures on wax surfaces with reference to their super -repellency. , 2007, Soft matter.

[9]  Lei Jiang,et al.  Photoresponsive surfaces with controllable wettability , 2007 .

[10]  Kaoru Tsujii,et al.  Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties. , 2007, The journal of physical chemistry. B.

[11]  Shinichiro Nakamura,et al.  Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface. , 2006, Angewandte Chemie.

[12]  Lichao Gao,et al.  The "lotus effect" explained: two reasons why two length scales of topography are important. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[13]  Lei Jiang,et al.  Controlling wettability and photochromism in a dual-responsive tungsten oxide film. , 2006, Angewandte Chemie.

[14]  H. Yan,et al.  Environmentally stable super water-repellent poly(alkylpyrrole) films. , 2005, Angewandte Chemie.

[15]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[16]  H. Erbil,et al.  Transformation of a Simple Plastic into a Superhydrophobic Surface , 2003, Science.

[17]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[18]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[19]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[20]  K. Tsujii,et al.  Super Water-repellent Surfaces Resulting from Fractal Structure. II. , 1997 .

[21]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[22]  Tomohiro Onda,et al.  Super Water-Repellent Surfaces Resulting from Fractal Structure , 1996 .

[23]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[24]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[25]  W. Barthlott,et al.  Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability , 1998 .

[26]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .