Nestmate recognition in social insects and the role of hydrocarbons

One of the conditions favoring the evolution and maintenance of sociality is the ability to discriminate between kin and non-kin, because it allows altruistic acts to be directed to recipients of high relatedness (Hamilton, 1987). Nestmate recognition is the process whereby social insects recognize individuals belonging to their own colony or an alien colony, and accordingly allow or prohibit entry to their nest. Nestmate recognition often results in the discrimination of kin from non-kin, but in social insects there is a distinction to be made between nestmate and kin recognition. Where kin recognition is the assessment of the degree of relatedness towards another individual, nestmate recognition is the binary recognition of group membership (Arnold et al. , 1996; Lenoir et al. , 1999). In ants, wasps and termites, the blend of hydrocarbons present on the cuticle appears to comprise the essential compounds that serve as nestmate recognition cues (Howard and Blomquist, 2005), although in honeybees fatty acids and esters may also play an important role (Breed, 1998a; but see Dani et al. , 2005; Ch?ine et al. , 2005). At the end of the 1990s, the notion that cuticular hydrocarbons act as recognition cues was supported mainly by correlative evidence (Singer, 1998; Vander Meer and Morel, 1998; Lenoir et al. , 1999), but significant progress has been made over the last decade.

[1]  W. Getz An analysis of learned kin recognition in hymenoptera , 1982 .

[2]  L. Sundström,et al.  Sociobiology: Worker nepotism among polygynous ants , 2003, Nature.

[3]  B. Hölldobler,et al.  The kin recognition system of carpenter ants (Camponotus spp.) , 1986, Behavioral Ecology and Sociobiology.

[4]  C. Errard Development of interspecific recognition behavior in the antsManica rubida andFormica selysi (Hymenoptera: Formicidae) reared in mixed-species groups , 2005, Journal of Insect Behavior.

[5]  M. Meskali,et al.  Behavioural effects of an experimental change in the chemical signature of the antCamponotus vagus (Scop.) , 1995, Insectes Sociaux.

[6]  B. Lavine,et al.  Temporal changes in colony cuticular hydrocarbon patterns ofSolenopsis invicta , 1989, Journal of Chemical Ecology.

[7]  R. V. Vander Meer,et al.  Nestmate Recognition in Ants , 2019, Pheromone Communication in Social Insects.

[8]  J. Korb,et al.  Scent of a queen—cuticular hydrocarbons specific for female reproductives in lower termites , 2009, Naturwissenschaften.

[9]  L. Greenberg,et al.  Nestmate recognition in sweat bees (Lasioglossum zephyrum): Does an individual recognize its own odour or only odours of its nestmates? , 1981, Animal Behaviour.

[10]  A. Brandstaetter,et al.  Reformation process of the neuronal template for nestmate-recognition cues in the carpenter ant Camponotus floridanus , 2007, Journal of Comparative Physiology A.

[11]  Ole Andersen,et al.  Multivariate statistical methods for evaluating biodegradation of mineral oil. , 2005, Journal of chromatography. A.

[12]  D. Liang,et al.  “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile , 2000, Naturwissenschaften.

[13]  K. Espelie,et al.  Cuticular hydrocarbons of four species of social wasps in the subfamily vespinae: Vespa crabro L., Dolichovespula maculata (L.), Vespula squamosa (Drury), and Vespula maculifrons (Buysson) , 1991 .

[14]  Aviva E Liebert,et al.  The Action Component of Recognition Systems: A Focus on the Response , 2004 .

[15]  J. Boomsma,et al.  Communication between hosts and social parasites , 2008 .

[16]  L. Keller,et al.  Sham nepotism as a result of intrinsic differences in brood viability in ants , 2006, Proceedings of the Royal Society B: Biological Sciences.

[17]  F. Ratnieks,et al.  Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer , 2007, Biology Letters.

[18]  R. Watson,et al.  Context-dependent nestmate discrimination in the paper wasp, Polistes dominulus : a critical test of the optimal acceptance threshold model , 1998, Animal Behaviour.

[19]  J. Heinze,et al.  Honest and dishonest communication in social Hymenoptera , 2009, Journal of Experimental Biology.

[20]  S. Turillazzi,et al.  Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. , 2005, Chemical senses.

[21]  F. Ratnieks,et al.  Honeybee guards do not use food-derived odors to recognize non- nest mates: a test of the Odor Convergence hypothesis , 2001 .

[22]  Josef K. Müller,et al.  Nestmate recognition in burying beetles: the “breeder's badge” as a cue used by females to distinguish their mates from male intruders , 2003 .

[23]  C. Galizia,et al.  Ants recognize foes and not friends , 2009, Proceedings of the Royal Society B: Biological Sciences.

[24]  T. Wenseleers,et al.  Knowing your enemies: seasonal dynamics of host–social parasite recognition , 2004, Naturwissenschaften.

[25]  C. Errard Long-term memory involved in nestmate recognition in ants , 1994, Animal Behaviour.

[26]  A. Lenoir,et al.  Individual, Geographical and Experimental Variation of Cuticular Hydrocarbons of the Ant Cataglyphis cursor (Hymenoptera: Formicidae)" Their Use in Nest and Subspecies Recognition , 1990 .

[27]  P. Jmhasly,et al.  Cuticular Hydrocarbons and Aggression in the Termite Macrotermes Subhyalinus , 2004, Journal of Chemical Ecology.

[28]  A. Bagnères,et al.  Cuticular Hydrocarbon Composition Reflects Genetic Relationship Among Colonies of the Introduced Termite Reticulitermes santonensis Feytaud , 2006, Journal of Chemical Ecology.

[29]  M. Meskali,et al.  Mechanism underlying cuticular hydrocarbon homogeneity in the antCamponotus vagus (SCOP.) (Hymenoptera: Formicidae): Role of postpharyngeal glands , 1995, Journal of Chemical Ecology.

[30]  T. Monnin Chemical recognition of reproductive status in social insects , 2006 .

[31]  K. Peschke,et al.  Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides? , 2008, Behavioral Ecology and Sociobiology.

[32]  V. Soroker,et al.  The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the antCataglyphis niger , 1994, Naturwissenschaften.

[33]  D. Pfennig,et al.  The evolution and ontogeny of nestmate recognition in social wasps , 1986 .

[34]  R. Yamaoka,et al.  Ant Nestmate and Non-Nestmate Discrimination by a Chemosensory Sensillum , 2005, Science.

[35]  S. Turillazzi,et al.  Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera, Vespidae) , 1997, Insectes Sociaux.

[36]  C. Brent,et al.  Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis , 2009, Behavioral Ecology and Sociobiology.

[37]  J. V. van Zweden,et al.  Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. , 2009, Journal of insect physiology.

[38]  K. Espelie,et al.  Kin recognition pheromones in social wasps: combining chemical and behavioural evidence , 1996, Animal Behaviour.

[39]  R. Zucchi,et al.  Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? , 2008, Animal Behaviour.

[40]  A. Hefetz The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) - interplay of colony odor uniformity and odor idiosyncrasy. A review , 2007 .

[41]  K. Espelie,et al.  Nest surface hydrocarbons facilitate nestmate recognition for the social wasp,Polistes metricus Say (Hymenoptera: Vespidae) , 1996, Journal of Insect Behavior.

[42]  J. Heinze,et al.  Individual Recognition in Ant Queens , 2005, Current Biology.

[43]  Bruce Waldman Mechanisms of kin recognition , 1987 .

[44]  D. Gordon,et al.  Task-Related Environment Alters the Cuticular Hydrocarbon Composition of Harvester Ants , 2001, Journal of Chemical Ecology.

[45]  D. Gordon,et al.  Social insects: Cuticular hydrocarbons inform task decisions , 2003, Nature.

[46]  Shozo Takahashi,et al.  Roles of cuticular hydrocarbons in intra-and interspecific recognition behavior of two rhinotermitidae species , 1995, Journal of Chemical Ecology.

[47]  G. J. Blomquist,et al.  Chemical Mimicry as an Integrating Mechanism: Cuticular Hydrocarbons of a Termitophile and Its Host , 1980, Science.

[48]  R. Yamaoka,et al.  Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae) , 2004 .

[49]  R. Wehner ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.

[50]  Francis L. W. Ratnieks,et al.  Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage , 1999, Animal Behaviour.

[51]  R. Crozier,et al.  Analysis of two genetic models for the innate components of colony odor in social Hymenoptera , 1979, Behavioral Ecology and Sociobiology.

[52]  Michael D. Breed,et al.  RECOGNITION PHEROMONES OF THE HONEY BEE , 1998 .

[53]  F. Ratnieks,et al.  Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable–absent” recognition system , 2007, Behavioral Ecology and Sociobiology.

[54]  Deborah M Gordon,et al.  Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli , 2007, Journal of Experimental Biology.

[55]  M. Breed,et al.  Nestmate recognition cues in a stingless bee, Trigona fulviventris , 2005, Animal Behaviour.

[56]  P. Dalton Psychophysical and behavioral characteristics of olfactory adaptation. , 2000, Chemical senses.

[57]  F. Ratnieks,et al.  Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). , 2005, Chemical senses.

[58]  A. Lenoir,et al.  Chemical ecology and social parasitism in ants. , 2001, Annual review of entomology.

[59]  J. Clément,et al.  Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. , 1987 .

[60]  K. Espelie,et al.  Surface lipids of social waspPolistes melricus say and its nest and nest pedicel and their relation to nestmate recognition , 1990, Journal of Chemical Ecology.

[61]  K. Ross,et al.  BIOCHEMICAL PHENOTYPIC AND GENETIC STUDIES OF TWO INTRODUCED FIRE ANTS AND THEIR HYBRID (HYMENOPTERA: FORMICIDAE) , 1987, Evolution; international journal of organic evolution.

[62]  M. Obin,et al.  Sources of nestmate recognition cues in the imported fire ant Solenopsis invicta buren (Hymenoptera: Formicidae) , 1988, Animal Behaviour.

[63]  A. Lenoir,et al.  Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera, Formicidae) , 2001, Insectes Sociaux.

[64]  K. Espelie,et al.  Surface lipids of the social waspPolistes annularis (L.) and its nest and nest pedicel , 1990, Journal of Chemical Ecology.

[65]  S. Turillazzi,et al.  Deciphering the recognition signature within the cuticular chemical profile of paper wasps , 2001, Animal Behaviour.

[66]  P. Jaisson Kin recognition: Kinship and fellowship in ants and social wasps , 1991 .

[67]  K. Jaffe,et al.  Evolution of territoriality and nestmate recognition systems in ants , 1987 .

[68]  M. Sasaki,et al.  Renewal process of nestmate recognition template in European honeybee Apis mellifera L. (Hymenoptera: Apidae) , 2006 .

[69]  S. Lahav,et al.  Direct Behavioral Evidence for Hydrocarbons as Ant Recognition Discriminators , 1999, Naturwissenschaften.

[70]  Robin J Stuart Collective cues as a basis for nestmate recognition in polygynous leptothoracine ants. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Turillazzi,et al.  Chemical Usurpation of a Nest by Paper Wasp Parasites , 1996, Science.

[72]  E. Morgan,et al.  Change in the chemical signature of the ant leptothorax lichtensteini bondroit with time , 1993 .

[73]  F. Ratnieks,et al.  Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model , 2000 .

[74]  G. J. Blomquist,et al.  Ecological, behavioral, and biochemical aspects of insect hydrocarbons. , 2005, Annual review of entomology.

[75]  M. Breed,et al.  Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. L. Singer Roles of Hydrocarbons in the Recognition Systems of Insects , 1998 .

[77]  Victoria Soroker,et al.  Hydrocarbon dynamics within and between nestmates inCataglyphis niger (Hymenoptera: Formicidae) , 1995, Journal of Chemical Ecology.

[78]  Michael D. Breed,et al.  Olfactory information processing in honeybee, Apis mellifera, nestmate recognition , 2004, Animal Behaviour.

[79]  E. Provost Nonnestmate kin recognition in the antLeptothorax lichtensteini: Evidence that genetic factors regulate colony recognition , 1991, Behavior genetics.

[80]  M. Crosland Variation in ant aggression and kin discrimination ability within and between colonies , 1990, Journal of Insect Behavior.

[81]  A. Hefetz,et al.  Label familiarity and discriminatory ability of ants reared in mixed groups , 1997, Insectes Sociaux.

[82]  T. Wenseleers,et al.  Wax combs mediate nestmate recognition by guard honeybees , 2006, Animal Behaviour.

[83]  Stefan Sieben,et al.  Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet , 2002, Naturwissenschaften.

[84]  H. Reeve,et al.  Nestmate recognition in social wasps: the origin and acquisition of recognition odours , 1986, Animal Behaviour.

[85]  G. J. Blomquist,et al.  Chemical Mimicry as an Integrating Mechanism for Three Termitophiles Associated With Reticulitermes Virginicus (Banks) , 1982 .

[86]  M. Breed Nestmate recognition in honey bees , 1983, Animal Behaviour.

[87]  S. Turillazzi,et al.  Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[88]  A. Lenoir,et al.  Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  B. H. Smith,et al.  Identification and bioassay of macrocyclic lactone sex pheromone of the halictine beeLasioglossum zephyrum , 1985, Journal of Chemical Ecology.

[90]  S. Martin,et al.  Chemical basis of nest-mate discrimination in the ant Formica exsecta , 2008, Proceedings of the Royal Society B: Biological Sciences.

[91]  C. Orians,et al.  Breeding alters cuticular hydrocarbons and mediates partner recognition by burying beetles , 2008, Animal Behaviour.

[92]  P. Sherman,et al.  Kin Recognition by Phenotype Matching , 1983, The American Naturalist.

[93]  Jean-Marie Cornuet,et al.  Kin recognition in honeybees , 1996, Nature.

[94]  Dominique Fresneau,et al.  Individuality and colonial identity in ants: the emergence of the social representation concept , 1999 .

[95]  R. Boulay,et al.  In-nest environment modulates nestmate recognition in the ant Camponotus fellah , 2004, Naturwissenschaften.

[96]  G. Gamboa Sister, aunt-niece, and cousin recognition by social wasps , 1988, Behavior genetics.

[97]  M. Breed,et al.  Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice , 1992, Animal Behaviour.