7 – Perovskite membrane reactors: fundamentals and applications for oxygen production, syngas production and hydrogen processing

This chapter addresses research and development of membrane reactors utilizing perovskite materials which can conduct oxygen ions and hydrogen protons at high temperatures; they are therefore finding applications in oxygen and hydrogen separation and reaction processes. This chapter introduces the structure, transport mechanisms and performance of various perovskite membrane materials, followed by an in-depth analysis of employing perovskite membranes for both oxidative and non-oxidative reactions. The membrane function of either selectively removing a reactant to shift the equilibrium or selectively adding a reactant to control the reaction mechanism and associated side reactions is important. We end by discussing future research trends and the major challenges that must be overcome for industrial take-up of this technology.

[1]  J. Malzbender,et al.  Influence of thermal history on the cubic-to-hexagonal phase transformation and creep behaviour of B , 2011 .

[2]  J. M. Serra,et al.  High Ethylene Production through Oxidative Dehydrogenation of Ethane Membrane Reactors Based on Fast Oxygen‐Ion Conductors , 2011 .

[3]  Shaomin Liu,et al.  Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3-d hollow fibres for oxygen separation , 2011 .

[4]  J. M. Serra,et al.  Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12 , 2011 .

[5]  José M. Serra,et al.  Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2011 .

[6]  Michael Sanders,et al.  Coupled transport and uphill permeation of steam and oxygen in a dense ceramic membrane , 2011 .

[7]  Shaomin Liu,et al.  Production of pure oxygen from BSCF hollow fiber membranes using steam sweep , 2011 .

[8]  Shanwen Tao,et al.  Solid-state electrochemical synthesis of ammonia: a review , 2011 .

[9]  Shaomin Liu,et al.  High performance perovskite hollow fibres for oxygen separation , 2011 .

[10]  Jingli Luo,et al.  Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity , 2011 .

[11]  T. Markus,et al.  Long-term operation of a La0.58Sr0.4Co0.2Fe0.8O3−δ-membrane for oxygen separation , 2010 .

[12]  J. Caro,et al.  Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas , 2010 .

[13]  G. Choi,et al.  Oxygen permeation of BSCF membrane with varying thickness and surface coating , 2010 .

[14]  T. Grande,et al.  High-temperature compressive creep behaviour of the perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3 − δ , 2009 .

[15]  E. Wachsman,et al.  High temperature SrCe0.9Eu0.1O3-δ proton conducting membrane reactor for H2 production using the water-gas shift reaction , 2009 .

[16]  Xiaoyao Tan,et al.  Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas , 2009 .

[17]  Shaomin Liu,et al.  The enhancement of oxygen flux on Ba0.5Sr0.5Co0.8Fe0.2O3―δ (BSCF) hollow fibers using silver surface modification , 2009 .

[18]  Michael Müller,et al.  Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions , 2009 .

[19]  J. M. Serra,et al.  Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12 , 2009 .

[20]  Subhash Bhatia,et al.  Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors , 2009 .

[21]  Anders Holmen,et al.  Direct conversion of methane to fuels and chemicals , 2009 .

[22]  Shaomin Liu,et al.  Performance of cobalt silica membranes in gas mixture separation , 2009 .

[23]  X. Tan,et al.  Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membranes by surface modifications , 2008 .

[24]  Shaomin Liu,et al.  Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction , 2008 .

[25]  Y. S. Lin,et al.  Simulation of methane conversion to syngas in a membrane reactor: Part I A model including product oxidation , 2008 .

[26]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[27]  Zi Gu,et al.  Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling , 2007 .

[28]  J. D. Costa,et al.  Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes , 2007 .

[29]  B. Morreale,et al.  Wall-catalyzed Water-Gas Shift Reaction in Multi-tubular, Pd and 80wt%Pd-20wt%Cu Membrane Reactors at 1173K , 2007 .

[30]  F. M. Alhabdan,et al.  Staging Distribution of Oxygen in Circulating Fast Fluidized-Bed Membrane Reactors for the Production of Hydrogen , 2007 .

[31]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[32]  Sun-Ju Song,et al.  Mixed pronton–electron conducting properties of Yb doped strontium cerate , 2007 .

[33]  R. Haugsrud Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er) , 2007 .

[34]  A. Seidel-Morgenstern,et al.  Catalytic Membrane Reactors for Partial Oxidation Using Perovskite Hollow Fiber Membranes and for Partial Hydrogenation Using a Catalytic Membrane Contactor , 2007 .

[35]  J. Kuipers,et al.  Feasibility study of a novel membrane reactor for syngas production: Part 2: Adiabatic reactor simulations , 2007 .

[36]  D. Miller,et al.  Silica membrane reactors for hydrogen processing , 2007 .

[37]  T. Nagai,et al.  Relationship between cation substitution and stability of perovskite structure in SrCoO3- δ-based mixed conductors , 2007 .

[38]  J. Caro,et al.  Novel hollow fibre membrane reactor for the partial oxidation of methane , 2006 .

[39]  J. Beltramini,et al.  An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using Molecular Sieve Silica (MSS) membrane reactors , 2006 .

[40]  A. Leo,et al.  Oxygen permeation through perovskite membranes and the improvement of oxygen flux by surface modification , 2006 .

[41]  E. Wachsman,et al.  Hydrogen permeability and effect of microstructure on mixed protonic-electronic conducting Eu-doped strontium cerate , 2005 .

[42]  A. Feldhoff,et al.  A Cobalt‐Free Oxygen‐Permeable Membrane Based on the Perovskite‐Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3–δ , 2005 .

[43]  Haihui Wang,et al.  Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors , 2005 .

[44]  Shaomin Liu,et al.  Preparation of Oxygen Ion Conducting Ceramic Hollow-Fiber Membranes , 2005 .

[45]  H. Matsumoto,et al.  Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe0.9 − x Y 0.1Ru x O 3 − α , 2005 .

[46]  Siew Hwa Chan,et al.  Kinetic Modelling of Partial Oxidation of Methane in an Oxygen Permeable Membrane Reactor , 2005 .

[47]  W. R. Moser,et al.  Dense Perovskite, La1‐xA′xFe1‐yCoyO3‐δ (A′= Ba, Sr, Ca), Membrane Synthesis, Applications, and Characterization , 2005 .

[48]  W. Coors Steam Reforming and Water-Gas Shift by Steam Permeation in a Protonic Ceramic Fuel Cell , 2004 .

[49]  Haihui Wang,et al.  Novel cobalt-free oxygen permeable membrane. , 2004, Chemical communications.

[50]  Y. S. Lin,et al.  Optimum operation of oxidative coupling of methane in porous ceramic membrane reactors , 2003 .

[51]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[52]  M. Nijemeisland,et al.  CFD Simulation of Reaction and Heat Transfer Near the Wall of a Fixed Bed , 2003 .

[53]  R. Cai,et al.  Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8−xO3−δ (x=0.2–0.6) , 2003 .

[54]  Yu-Ming Lin,et al.  Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: Experimental and modeling , 2003 .

[55]  W.Grover Coors,et al.  Protonic ceramic fuel cells for high-efficiency operation with methane , 2003 .

[56]  Said S.E.H. Elnashaie,et al.  Modeling and optimization of a novel membrane reformer for higher hydrocarbons , 2003 .

[57]  E. Iglesia,et al.  Catalytic Pyrolysis of Methane on Mo/H-ZSM5 with Continuous Hydrogen Removal by Permeation Through Dense Oxide Films , 2002 .

[58]  R. Cai,et al.  Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation , 2002 .

[59]  M. Iliuta,et al.  Methane Nonoxidative Aromatization over Ru−Mo/HZSM-5 in a Membrane Catalytic Reactor , 2002 .

[60]  F. Shimojo,et al.  Microscopic mechanism of proton conduction in perovskite oxides from ab initio molecular dynamics simulations , 2001 .

[61]  Zongping Shao,et al.  Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas , 2001 .

[62]  V. Violante,et al.  Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor , 2001 .

[63]  X. Tan,et al.  METHANE COUPLING USING CATALYTIC MEMBRANE REACTORS , 2001 .

[64]  David Farrusseng,et al.  Porous ceramic membranes for catalytic reactors — overview and new ideas , 2001 .

[65]  J. Lunsford CATALYTIC CONVERSION OF METHANE TO MORE USEFUL CHEMICALS AND FUELS: A CHALLENGE FOR THE 21ST CENTURY , 2000 .

[66]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[67]  T. Ishihara,et al.  Mixed electronic–oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 perovskite oxide , 2000 .

[68]  G. Marnellos,et al.  Synthesis of Ammonia at Atmospheric Pressure with the Use of Solid State Proton Conductors , 2000 .

[69]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[70]  Yaping Lu,et al.  Oxygen-permeable dense membrane reactor for the oxidative coupling of methane. , 2000 .

[71]  Wanqin Jin,et al.  Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas , 2000 .

[72]  Zongping Shao,et al.  Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes , 2000 .

[73]  Vladislav V. Kharton,et al.  Perovskite-type oxides for high-temperature oxygen separation membranes , 1999 .

[74]  K. Kreuer Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides , 1999 .

[75]  Yuehe Lin,et al.  Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane , 1998 .

[76]  Y. S. Lin,et al.  Catalytic properties of yttria doped bismuth oxide ceramics for oxidative coupling of methane , 1997 .

[77]  Y. Kao,et al.  A Comparative Simulation Study on Oxidative Coupling of Methane in Fixed-Bed and Membrane Reactors , 1997 .

[78]  W. R. Moser,et al.  Oxidative coupling of methane in porous Vycor membrane reactors , 1996 .

[79]  G. Seifert,et al.  A quantum molecular dynamics study of proton conduction phenomena in BaCeO3 , 1996 .

[80]  Jennifer L. Zilka,et al.  Inorganic membrane reactors for the oxidative coupling of methane , 1996 .

[81]  H. Verweij,et al.  Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor , 1995 .

[82]  E. Kikuchi Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor , 1995 .

[83]  J. E. Elshof,et al.  Activation of methane using solid oxide membranes , 1995 .

[84]  Y. S. Lin,et al.  Analysis of oxidative coupling of methane in dense oxide membrane reactors , 1995 .

[85]  N. Yamazoe,et al.  Oxygen semipermeability of mixed-conductive oxide thick-film prepared by slip casting , 1995 .

[86]  W. R. Moser,et al.  MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR , 1995 .

[87]  H. Kruidhof,et al.  Mixed conducting yttrium-barium-cobalt-oxide for high oxygen permeation , 1994 .

[88]  Jiasheng Huang,et al.  Dehydrogenation and aromatization of methane under non-oxidizing conditions , 1993 .

[89]  L. Lobban,et al.  Oxidative coupling of methane over lithium/magnesia: kinetics and mechanisms , 1992 .

[90]  N. Yamazoe,et al.  Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-type Oxides , 1988 .

[91]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[92]  N. Yamazoe,et al.  OXYGEN-SORPTIVE PROPERTIES OF DEFECT PEROVSKITE-TYPE La1−xSrxCo1−yFeyO3−δ , 1985 .

[93]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[94]  X. Tan,et al.  Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor , 2006 .

[95]  George R. Gavalas,et al.  Oxygen selective ceramic hollow fiber membranes , 2005 .

[96]  W. Thomson,et al.  Perovskite-type oxide membranes for the oxidative coupling of methane , 1997 .

[97]  Shigeyuki Uemiya,et al.  Steam reforming of methane in a hydrogen-permeable membrane reactor , 1990 .