Malignant Hyperthermia: An Inherited Disorder of Skeletal Muscle Ca2+ Regulation

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle characterized by muscle contracture and life-threatening hypermetabolic crisis following exposure to halogenated anesthetics and depolarizing muscle relaxants during surgery. Susceptibility to MH results from mutations in Ca2+ channel proteins that mediate excitation–contraction (EC) coupling, with the ryanodine receptor Ca2+ release channel (RyR1) representing the major locus. Here we review recent studies characterizing the effects of MH mutations on the sensitivity of the RyR1 to drugs and endogenous channel effectors including Ca2+ and calmodulin. In addition, we present a working model that incorporates these effects of MH mutations on the isolated RyR1 with their effects on the physiologic mechanism that activates Ca2+ release during EC coupling in intact muscle.

[1]  G. Lamb,et al.  Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. , 1991, The Journal of physiology.

[2]  L. Xu,et al.  Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). , 1995, Biophysical journal.

[3]  G. Gronert,et al.  Aetiology of malignant hyperthermia. , 1988, British journal of anaesthesia.

[4]  J. Mickelson,et al.  Abnormal ryanodine receptor channels in malignant hyperthermia. , 1990, Biophysical journal.

[5]  F. Lehmann-Horn,et al.  Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release , 2000, The Journal of physiology.

[6]  G. Lamb Excitation–Contraction Coupling In Skeletal Muscle: Comparisons With Cardiac Muscle , 2000, Clinical and experimental pharmacology & physiology.

[7]  E. Gallant,et al.  The action of perchlorate on malignant-hyperthermia-susceptible muscle , 1997, Pflügers Archiv.

[8]  S. Hamilton,et al.  Apocalmodulin and Ca2+ calmodulin bind to the same region on the skeletal muscle Ca2+ release channel. , 1999, Biochemistry.

[9]  J. Mickelson,et al.  Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. , 1996, Physiological reviews.

[10]  Michael Radermacher,et al.  Locations of Calmodulin and FK506-binding Protein on the Three-dimensional Architecture of the Skeletal Muscle Ryanodine Receptor* , 1997, The Journal of Biological Chemistry.

[11]  A. Herrmann-Frank,et al.  Calmodulin sensitivity of the sarcoplasmic reticulum ryanodine receptor from normal and malignant-hyperthermia-susceptible muscle. , 1996, The Biochemical journal.

[12]  J. Carpenter,et al.  Dantrolene, a direct acting skeletal muscle relaxant. , 1973, Journal of pharmaceutical sciences.

[13]  M. Phillips,et al.  Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. , 1990, The Journal of biological chemistry.

[14]  R. Jordan,et al.  Porcine malignant hyperthermia: Genotype and contractile threshold of immature muscles , 1996, Muscle & nerve.

[15]  B. Adams,et al.  Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling , 1990, Nature.

[16]  R. Bull,et al.  Sarcoplasmic reticulum release channels from frog skeletal muscle display two types of calcium dependence , 1993, FEBS letters.

[17]  A. Marks,et al.  The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. , 1993, The Journal of biological chemistry.

[18]  L W Hall,et al.  Unusual reaction to suxamethonium chloride. , 1966, British medical journal.

[19]  K. Campbell,et al.  Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. , 1987, The Journal of biological chemistry.

[20]  J. Heffron Malignant hyperthermia: biochemical aspects of the acute episode. , 1988, British journal of anaesthesia.

[21]  M. Endo,et al.  CHANGES IN THE Ca-INDUCED Ca RELEASE MECHANISM IN THE SARCOPLASMIC RETICULUM OF THE MUSCLE FROM A PATIENT WITH MALIGNANT HYPERTHERMIA , 1983 .

[22]  A. Herrmann-Frank,et al.  The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. , 1995, Biochimica et biophysica acta.

[23]  K. Beam,et al.  Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA , 1988, Nature.

[24]  J. Desmedt,et al.  Effect of dantrolene sodium on calcium movements in single muscle fibres , 1974, Nature.

[25]  J. Frank,et al.  Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum , 1989, Nature.

[26]  P. Halsall,et al.  Retrospective analysis of anaesthetics received by patients before susceptibility to malignant hyperpyrexia was recognized. , 1979, British journal of anaesthesia.

[27]  Caffeine stimulation of malignant hyperthermia-susceptible sarcoplasmic reticulum Ca2+ release channel. , 1994, The American journal of physiology.

[28]  M. Karhanek,et al.  Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle , 1993, The Journal of general physiology.

[29]  R. Penner,et al.  Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Nelson Abnormality in calcium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. , 1983, The Journal of clinical investigation.

[31]  J. Mickelson,et al.  Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. , 1988, The Journal of biological chemistry.

[32]  M. F. Schneider Control of calcium release in functioning skeletal muscle fibers. , 1994, Annual review of physiology.

[33]  B. Britt Dantrolene—An Update , 1987 .

[34]  J. Mickelson,et al.  Dantrolene Inhibition of Sarcoplasmic Reticulum Ca2+Release by Direct and Specific Action at Skeletal Muscle Ryanodine Receptors* , 1997, The Journal of Biological Chemistry.

[35]  D. Jenden,et al.  The pharmacology of ryanodine. , 1969, Pharmacological reviews.

[36]  B. Britt,et al.  The caffeine test of isolated human muscle in relation to malignant hyperthermia , 1977, Canadian Anaesthetists' Society journal.

[37]  C. Louis,et al.  Dantrolene Inhibition of Ryanodine Receptor Ca2+Release Channels , 2001, The Journal of Biological Chemistry.

[38]  J. Sutko,et al.  Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? , 1996, Physiological reviews.

[39]  J. Mickelson,et al.  The effects of volatile anesthetics on calcium regulation by malignant hyperthermia-susceptible sarcoplasmic reticulum. , 1992, Anesthesiology.

[40]  J. Mickelson,et al.  Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors. , 1996, Biophysical journal.

[41]  B. Britt,et al.  Malignant hyperthermia: A statistical review , 1970, Canadian Anaesthetists' Society journal.

[42]  J. Mickelson,et al.  Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. , 1993, The American journal of physiology.

[43]  H. Brinkmeier,et al.  Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. , 2000, Physiological reviews.

[44]  P. Iaizzo,et al.  The use of Fura-2 to estimate myoplasmic [Ca2+] in human skeletal muscle. , 1989, Cell calcium.

[45]  P. Allen,et al.  Myoplasmic free [Ca2+] during a malignant hyperthermia episode in swine , 1988, Muscle & nerve.

[46]  S. Fleischer,et al.  Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. , 1997, Biophysical journal.

[47]  E. Stefani,et al.  Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. , 1992, Annual review of physiology.

[48]  M. Richter,et al.  Functional Characterization of a Distinct Ryanodine Receptor Mutation in Human Malignant Hyperthermia-susceptible Muscle* , 1997, The Journal of Biological Chemistry.

[49]  B. Britt,et al.  Dantrolene -In vitro studies in malignant hyperthermia susceptible (MHS) and normal skeletal muscle , 1984, Canadian Anaesthetists' Society journal.

[50]  F. Protasi,et al.  Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. , 1997, Physiological reviews.

[51]  S. Hamilton,et al.  Functional interactions of cytoplasmic domains of the skeletal muscle Ca2+ release channel. , 1998, Trends in cardiovascular medicine.

[52]  K. Otsu,et al.  Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. , 1991, Science.

[53]  S. Hamilton,et al.  Regulation of RYR1 activity by Ca(2+) and calmodulin. , 2000, Biochemistry.

[54]  V. Sorrentino The ryanodine receptor family of intracellular calcium release channels. , 1995, Advances in pharmacology.

[55]  G. Strasburg,et al.  Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. , 2000, American journal of physiology. Cell physiology.

[56]  T. McCarthy,et al.  Ryanodine receptor mutations in malignant hyperthermia and central core disease , 2000, Human mutation.

[57]  D. Maclennan,et al.  Malignant hyperthermia and central core disease: disorders of Ca2+ release channels. , 1998, The American journal of medicine.

[58]  B. Britt,et al.  Metabolic error of muscle metabolism after recovery from malignant hyperthermia. , 1970, Lancet.

[59]  W. Chandler,et al.  Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction Coupling , 1973, Nature.

[60]  M. G. Larach Standardization of the Caffeine Halothane Muscle Contracture Test , 1989, Anesthesia and analgesia.

[61]  P. Allen,et al.  Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. , 1984, Biochimica et biophysica acta.

[62]  G. Lamb,et al.  Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. , 1997, Biophysical journal.

[63]  E. Balog,et al.  Malignant hyperthermia: Effects of sarcoplasmic reticulum Ca2+ pump inhibition , 1998, Muscle & nerve.

[64]  F. Lehmann-Horn,et al.  Genetics and pathogenesis of malignant hyperthermia , 2000, Muscle & nerve.