The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging

Developing new thermal interface materials (TIMs) is a key activity to meeting package thermal performance requirements for future generations of microprocessors. Indium solder is capable of demonstrating end-of-line performance to meet current technology targets due to its inherent high thermal conductivity. However, improving its reliability performance, particularly in temperature cycling, is a challenge. This study describes the failure mechanisms and reliability performance of indium solder TIM as a function of integrated heat spreader metallization thickness, TIM bond line thickness, and die size. Also studeited were the steps taken to improve its temperature cycle performance. Analyses were performed using thermal resistance measurements, scanning-electron microscopy, scanning-acoustic microscopy, and transmission-electron microscopy to characterize the solder TIM thermal performance, interfacial microstructure, and failure mechanisms.