COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco

The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s−1, an FWHM of 1200 ± 30 km s−1, and an average net blueshift of 165 ± 10 km s−1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10−7M⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

[1]  G. Anupama,et al.  Insights into the evolution of symbiotic recurrent novae from radio synchrotron emission: V745 Scorpii and RS Ophiuchi , 2015, 1510.02203.

[2]  Stony Brook University,et al.  Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014) , 2015, 1509.04004.

[3]  P. Ricker,et al.  SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS , 2015, 1503.06181.

[4]  L. Chomiuk,et al.  THE DISTANCE TO NOVA V959 MON FROM VLA IMAGING , 2015, 1503.03899.

[5]  J. Drake,et al.  X-RAY FADING AND EXPANSION IN THE “MINIATURE SUPERNOVA REMNANT” OF GK PERSEI , 2015, 1503.03181.

[6]  F. Harrison,et al.  A NuSTAR observation of the fast symbiotic nova V745 Sco in outburst , 2014, 1412.2088.

[7]  K. von Braun,et al.  The expanding fireball of Nova Delphini 2013 , 2014, Nature.

[8]  R. Poleski,et al.  Recurrent and symbiotic novae in data from the Optical Gravitational Lensing Experiment , 2014 .

[9]  R. Blandford,et al.  Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources , 2014 .

[10]  J. Guarro,et al.  Early evolution of the extraordinary Nova Del 2013 (V339 Del) , 2014, 1407.8212.

[11]  L. Chomiuk,et al.  The 2011 outburst of recurrent nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics , 2014, 1404.3210.

[12]  E. Hsiao,et al.  NEAR-IR STUDIES OF RECURRENT NOVA V745 SCORPII DURING ITS 2014 OUTBURST , 2014, 1403.0651.

[13]  E. Waagen Nova Sagittarii 2014 = PNV J18250860-2236024 AND Erratum , 2014 .

[14]  J. Osborne,et al.  Evolving early, hard X-ray emission of V745 Sco , 2014 .

[15]  P. Jean,et al.  Fermi-LAT Gamma-ray Observations of Recurrent Nova V745 Sco , 2014 .

[16]  L. Chomiuk,et al.  Detection of Rising Radio Emission from V745 Sco , 2014 .

[17]  G. Anupama,et al.  Optical observations of the recurrent nova V745 Sco , 2014 .

[18]  J. Brooks,et al.  HYDROGEN BURNING ON ACCRETING WHITE DWARFS: STABILITY, RECURRENT NOVAE, AND THE POST-NOVA SUPERSOFT PHASE , 2013, 1309.3375.

[19]  J. Osborne,et al.  Obscuration effects in super-soft-source X-ray spectra , 2013, 1309.2604.

[20]  A. Crotts,et al.  THE RECURRENT NOVA T Pyx: DISTANCE AND REMNANT GEOMETRY FROM LIGHT ECHOES , 2013, 1305.5245.

[21]  H. Mason,et al.  CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XIII. SOFT X-RAY IMPROVEMENTS AND OTHER CHANGES , 2013 .

[22]  Guillaume Dubus,et al.  Particle acceleration and non-thermal emission during the V407 Cygni nova outburst , 2012, 1209.0625.

[23]  T. Augusteijn,et al.  The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. II.The optically thin phase and the structure of the ejecta in recurrent novae , 2012, 1211.3453.

[24]  B. Tofflemire,et al.  X-RAY GRATING OBSERVATIONS OF RECURRENT NOVA T PYXIDIS DURING THE 2011 OUTBURST , 2012, 1311.2893.

[25]  L. Chomiuk,et al.  X-RAY EMISSION FROM AN ASYMMETRIC BLAST WAVE AND A MASSIVE WHITE DWARF IN THE GAMMA-RAY EMITTING NOVA V407 Cyg , 2012, 1201.5643.

[26]  U. Hwang,et al.  A CHANDRA X-RAY SURVEY OF EJECTA IN THE CASSIOPEIA A SUPERNOVA REMNANT , 2011, 1111.7316.

[27]  Alan C. Calder,et al.  Kelvin–Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions , 2011, Nature.

[28]  J. Drake,et al.  Modelling the 2010 blast wave of the symbiotic-like nova V407 Cygni , 2011, 1109.5024.

[29]  E. Mason U Scorpii 2010 outburst: observational evidence of an underlying ONeMg white dwarf , 2011, 1107.4013.

[30]  J. Dubau,et al.  He-like Ions as Practical Astrophysical Plasma Diagnostics: From Stellar Coronae to Active Galactic Nuclei , 2010, 1101.3184.

[31]  T Glanzman,et al.  Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. , 2010, Science.

[32]  J. J. Drake,et al.  THE EARLY BLAST WAVE OF THE 2010 EXPLOSION OF U SCORPII , 2010, 1007.2810.

[33]  Max-Planck-Institut fur Radioastronomie,et al.  THE EXPANDING NEBULAR REMNANT OF THE RECURRENT NOVA RS OPHIUCHI (2006). II. MODELING OF COMBINED HUBBLE SPACE TELESCOPE IMAGING AND GROUND-BASED SPECTROSCOPY , 2009, 0908.2704.

[34]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[35]  M. F. Bode,et al.  X-Ray Spectroscopic Diagnosis of a Wind-Collimated Blast Wave and Metal-Rich Ejecta from the 2006 Explosion of RS Ophiuchi , 2009 .

[36]  J. J. Drake,et al.  Three-dimensional modeling of the asymmetric blast wave from the 2006 outburst of RS Ophiuchi: Early X-ray emission , 2008, 0811.3941.

[37]  J. Osborne,et al.  HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE EVOLVING SHOCK IN THE 2006 OUTBURST OF RS OPHIUCHI , 2008, 0810.2023.

[38]  Michael P. Rupen,et al.  Uncovering the Nature of Nova Jets: A Radio Image of Highly Collimated Outflows from RS Ophiuchi , 2008 .

[39]  Rolf Walder,et al.  3D simulations of RS Ophiuchi : from accretion to nova blast , 2008, 0804.2628.

[40]  M. Rupen,et al.  An Expanding Shell and Synchrotron Jet in RS Ophiuchi , 2007, 0711.1142.

[41]  Marina Orio,et al.  X-Ray Spectroscopy of the 2006 Outburst of RS Ophiuchi , 2007, 0709.4512.

[42]  Matthew W. Muterspaugh,et al.  Interferometric Observations of V1663 Aquilae (Nova Aql 2005) , 2007 .

[43]  Space Telescope Sceince Institute,et al.  Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the 2006 Outburst of the Recurrent Nova RS Ophiuchi , 2007, 0706.2745.

[44]  M. Hernanz,et al.  Evidence for Nonlinear Diffusive Shock Acceleration of Cosmic Rays in the 2006 Outburst of the Recurrent Nova RS Ophiuchi , 2007, 0705.4422.

[45]  L. Bildsten,et al.  Thermally Stable Nuclear Burning on Accreting White Dwarfs , 2007, astro-ph/0702049.

[46]  R. Davis,et al.  An asymmetric shock wave in the 2006 outburst of the recurrent nova RS Ophiuchi , 2006, Nature.

[47]  N. Gehrels,et al.  Swift Observations of the 2006 Outburst of the Recurrent Nova RS Ophiuchi. I. Early X-Ray Emission from the Shocked Ejecta and Red Giant Wind , 2006, astro-ph/0604618.

[48]  K. Nomoto,et al.  Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.

[49]  L. Althaus,et al.  Mass-radius relations for massive white dwarf stars , 2005, astro-ph/0507559.

[50]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[51]  D. Dewey,et al.  An Overview of the Performance of the Chandra X-ray Observatory , 2003, astro-ph/0503319.

[52]  U. Hwang,et al.  On the Determination of Ejecta Structure and Explosion Asymmetry from the X-Ray Knots of Cassiopeia A , 2003, astro-ph/0306119.

[53]  H. Duerbeck,et al.  The CTIO nova survey: data , 2003 .

[54]  M. Bode,et al.  Echoes of an Explosive Past: Solving the Mystery of the First Superluminal Source , 2003 .

[55]  D. Dewey,et al.  High-Resolution X-Ray Spectra of Capella: Initial Results from the Chandra High-Energy Transmission Grating Spectrometer , 2000, astro-ph/0006457.

[56]  Heinrich W. Braeuninger,et al.  Description and performance of the low-energy transmission grating spectrometer on board Chandra , 2000, Astronomical Telescopes and Instrumentation.

[57]  Mariko Kato,et al.  Optically thick wind solutions for an extremely rapid light curve of recurrent novae , 1999 .

[58]  J. Truran,et al.  Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities , 1998 .

[59]  C. Done,et al.  Complex absorption and reflection of a multitemperature cyclotron–bremsstrahlung X-ray cooling shock in BY Cam , 1997, astro-ph/9712226.

[60]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[61]  Mario Livio,et al.  On the interpretation and implications of nova abundances: An abundance of riches or an overabundance of enrichments , 1994 .

[62]  J. J. Johnson,et al.  Infrared observations of the recurrent novae V745 Sco and V3890 Sgr , 1993 .

[63]  A. King,et al.  Iron Kα lines and the absorption structure of intermediate polars , 1991 .

[64]  L. Stella,et al.  Iron Line Diagnostics in X-ray Sources , 1991 .

[65]  H. Duerbeck V745 Sco - a new member of the elusive group of recurrent novae. , 1989 .

[66]  A. Taylor,et al.  VLBI observations of RS Oph – a recurrent nova with non-spherical ejection , 1989 .

[67]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[68]  Warren M. Sparks,et al.  A model for the 1987 outburst of the recurrent Nova U Scorphii , 1988 .

[69]  M. Reid,et al.  The distance to the center of the Galaxy , 1987 .

[70]  J. W. Truran,et al.  On the frequency of occurrence of oxygen-neon-magnesium white dwarfs in classical nova systems , 1986 .

[71]  A. R. Taylor,et al.  Radio observations of the 1985 outburst of RS Ophiuchi , 1986 .

[72]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[73]  M. F. Bode,et al.  A model for the outburst of nova RS Ophiuchi in 1985 , 1985 .

[74]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[75]  B. Fryxell,et al.  Finite propagation time in multidimensional thermonuclear runaways , 1982 .

[76]  M. Fujimoto A theory of hydrogen shell flashes on accreting white dwarfs. I - Their progress and the expansion of the envelope. II - The stable shell burning and the recurrence period of shell flashes , 1982 .

[77]  D. Sugimoto Symposium on Fundamental Problems in the Theory of Stellar Evolution , 1981 .

[78]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[79]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. III - 0.5 solar mass models with enhanced carbon, oxygen, and nitrogen , 1974 .

[80]  J. Hutchings The Non-Spherical Nebulae of Nova Delphini 1967, Nova Vulpeculae 1968(1), and Nova Serpentis 1970 , 1972 .

[81]  A. H. Gabriel,et al.  Interpretation of Solar Helium-Like Ion Line Intensities , 1969 .

[82]  J. Cole,et al.  Similarity and Dimensional Methods in Mechanics , 1960 .