Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials

A versatile method for combining density functional theory in the local density approximation with dynamical mean-field theory (DMFT) is presented. Starting from a general basis-independent formulation, we use Wannier functions as an interface between the two theories. These functions are used for the physical purpose of identifying the correlated orbitals in a specific material, and also for the more technical purpose of interfacing DMFT with different kinds of band-structure methods (with three different techniques being used in the present work). We explore and compare two distinct Wannier schemes, namely the maximally localized Wannier function and the $N\text{th}$ order muffin-tin-orbital methods. Two correlated materials with different degrees of structural and electronic complexity, $\mathrm{Sr}\mathrm{V}{\mathrm{O}}_{3}$ and $\mathrm{Ba}\mathrm{V}{\mathrm{S}}_{3}$, are investigated as case studies. $\mathrm{Sr}\mathrm{V}{\mathrm{O}}_{3}$ belongs to the canonical class of correlated transition-metal oxides, and is chosen here as a test case in view of its simple structure and physical properties. In contrast, the sulfide $\mathrm{Ba}\mathrm{V}{\mathrm{S}}_{3}$ is known for its rich and complex physics, associated with strong correlation effects and low-dimensional characteristics. Insights into the physics associated with the metal-insulator transition of this compound are provided, particularly regarding correlation-induced modifications of its Fermi surface. Additionally, the necessary formalism for implementing self-consistency over the electronic charge density in a Wannier basis is discussed.

[1]  J. M. Luttinger FERMI SURFACE AND SOME SIMPLE EQUILIBRIUM PROPERTIES OF A SYSTEM OF INTERACTING FERMIONS , 1960 .

[2]  Emilio Artacho,et al.  Projection of plane-wave calculations into atomic orbitals , 1995 .

[3]  Inoue,et al.  Systematic development of the spectral function in the 3d1 Mott-Hubbard system Ca1-xSrxVO3. , 1995, Physical review letters.

[4]  M. Onoda,et al.  Metallic properties of perovskite oxide SrVO3 , 1991 .

[5]  A. I. Lichtenstein,et al.  Multiple-scattering formalism for correlated systems: A KKR-DMFT approach , 2005, cond-mat/0504760.

[6]  E. I. Blount Formalisms of Band Theory , 1962 .

[7]  K. Held,et al.  Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type. , 2006, Physical review letters.

[8]  Singh,et al.  Ground-state properties of lanthanum: Treatment of extended-core states. , 1991, Physical review. B, Condensed matter.

[9]  H. Nakamura,et al.  Incommensurate Magnetic Ordering and Spin-Liquid-Like State in a Triangular Lattice BaVS3: Neutron Diffraction and Scattering Study , 2000 .

[10]  Fye,et al.  Monte Carlo method for magnetic impurities in metals. , 1986, Physical review letters.

[11]  Kobayashi,et al.  Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3: Influence of long-range Coulomb interaction. , 1995, Physical review. B, Condensed matter.

[12]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[13]  I. Solovyev First-principles Wannier functions and effective lattice fermion models for narrow-band compounds , 2005, cond-mat/0506632.

[14]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[15]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[16]  D. E. Kondakov,et al.  Mutual experimental and theoretical validation of bulk photoemission spectra of Sr1-xCaxVO3. , 2003, Physical review letters.

[17]  O. K. Andersen,et al.  Calculated electronic structure of the sandwichd1 metals LaI2 and CeI2: Application of new LMTO techniques , 1995 .

[18]  A. Lichtenstein,et al.  Observation of Hubbard bands in γ-manganese , 2004 .

[19]  Antoine Georges,et al.  The alpha-gamma transition of cerium is entropy driven. , 2006, Physical review letters.

[20]  G. Kotliar,et al.  Interplay of Mott transition and ferromagnetism in the orbitally degenerate Hubbard model , 1996, cond-mat/9612172.

[21]  L. Mattheiss Electronic structure of quasi-one-dimensional BaVS3 , 1995 .

[22]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[23]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[24]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[25]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[26]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[27]  Krieger,et al.  Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[29]  B. Chamberland,et al.  Alkaline-earth vanadium (IV) oxides having the AVO3 composition , 1971 .

[30]  M. Lobanov,et al.  Structural aspects of the metalinsulator transition in BaVS 3 , 2005 .

[31]  Lars Hedin,et al.  Explicit local exchange-correlation potentials , 1971 .

[32]  Lawrence,et al.  Suppression of the metal-to-insulator transition in BaVS3 with pressure. , 1995, Physical review. B, Condensed matter.

[33]  J. D. Cloizeaux,et al.  Orthogonal Orbitals and Generalized Wannier Functions , 1963 .

[34]  Antoine Georges,et al.  Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. , 2004, Physical review letters.

[35]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[36]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[37]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[38]  Correlation effects on the electronic structure of TiOCl: A NMTO+DMFT study , 2004, cond-mat/0411631.

[39]  Screening of Coulomb interactions in transition metals , 2004, cond-mat/0407786.

[40]  Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism , 2002, cond-mat/0203202.

[41]  D. Sarma,et al.  Electronic structure of Ca1 − xSrxVO3: A tale of two energy scales , 2001, cond-mat/0105424.

[42]  I. A. Nekrasov,et al.  Comparative study of correlation effects in CaVO3 and SrVO3 , 2005, cond-mat/0501240.

[43]  M. Lobanov,et al.  X-ray anomalous scattering investigation of BaVS{sub 3} , 2006 .

[44]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[45]  A Georges,et al.  First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. , 2003, Physical review letters.

[46]  C. T. Chen,et al.  Bulk- and Surface-Sensitive High-Resolution Photoemission Study of Two Mott-Hubbard Systems : SrVO3 and CaVO3 , 2006 .

[47]  I. A. Nekrasov,et al.  Full orbital calculation scheme for materials with strongly correlated electrons , 2004, cond-mat/0407359.

[48]  M. Anne,et al.  Powder neutron diffraction studies for the low-temperature phase transitions in stoichiometric BaVS3 , 1986 .

[49]  Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab initio Hamiltonians , 2003, cond-mat/0307658.

[50]  I. A. Nekrasov,et al.  Momentum-resolved spectral functions of SrVO 3 calculated by LDA + DMFT , 2006 .

[51]  Hybrid LDA and generalized tight-binding method for electronic structure calculations of strongly correlated electron systems , 2005, cond-mat/0505341.

[52]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[53]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[54]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[55]  Stefan Blügel,et al.  Ground States of Constrained Systems: Application to Cerium Impurities , 1984 .

[56]  O. Gunnarsson,et al.  Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. , 1989, Physical review. B, Condensed matter.

[57]  Steven G. Louie,et al.  Self-consistent mixed-basis approach to the electronic structure of solids , 1979 .

[58]  D. E. Kondakov,et al.  Orbital-selective Mott-insulator transition in Ca2 - xSrxRuO4 , 2002 .

[59]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  S. Massidda,et al.  Hartree-Fock LAPW approach to the electronic properties of periodic systems. , 1993, Physical review. B, Condensed matter.

[62]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[63]  G. Kotliar,et al.  Spectral density functionals for electronic structure calculations , 2001, cond-mat/0106308.

[64]  A I Lichtenstein,et al.  Dynamical singlets and correlation-assisted Peierls transition in VO2. , 2005, Physical review letters.

[65]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[66]  H. Berger,et al.  One-dimensional instability in BaVS3. , 2003, Physical review letters.

[67]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[68]  Per-Olov Löwdin,et al.  A Note on the Quantum‐Mechanical Perturbation Theory , 1951 .

[69]  A. I. Lichtenstein,et al.  Ab initio electronic structure calculations of correlated systems: An EMTO-DMFT approach , 2003, cond-mat/0309304.

[70]  Hiroki Nakamura,et al.  Symmetry Breaking in the Metal-Insulator Transition of BaVS3 , 2002 .

[71]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[72]  McMahan,et al.  Calculated effective Hamiltonian for La2CuO4 and solution in the impurity Anderson approximation. , 1988, Physical review. B, Condensed matter.

[73]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[74]  How chemistry controls electron localization in 3d1 perovskites: a Wannier-function study , 2005, cond-mat/0504034.

[75]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[76]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[77]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[78]  B. N. Brockhouse,et al.  Pseudopotentials in the theory of metals , 1966 .

[79]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[80]  Hase,et al.  Evolution of the spectral function in Mott-Hubbard systems with d1 configuration. , 1992, Physical review letters.

[81]  G. Kotliar,et al.  Correlated electrons in δ-plutonium within a dynamical mean-field picture , 2001, Nature.

[82]  Arthur J Freeman,et al.  Total-energy full-potential linearized augmented-plane-wave method for bulk solids: Electronic and structural properties of tungsten , 1984 .

[83]  K Tanaka,et al.  Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy. , 2005, Physical review letters.

[84]  M. Whangbo,et al.  A discussion on the apparently puzzling structural, electrical and magnetic properties of BaVS3 , 2003 .

[85]  E. Zurek,et al.  Muffin-tin orbital Wannier-like functions for insulators and metals. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[86]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[87]  J. Thompson,et al.  Effect of magnetic fields on the metal-insulator transition in BaVS{sub 3} , 1999 .

[88]  A Liebsch Surface versus bulk Coulomb correlations in photoemission spectra of SrVO3 and CaVO3. , 2003, Physical review letters.

[89]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.