Numerical study of the Navier–Stokes-α deconvolution model with pointwise mass conservation

ABSTRACT This paper presents an efficient, universally stable finite-element scheme for the NSα deconvolution model. Accuracy is enhanced by van Cittert approximate deconvolution, as well as through the choice of pointwise divergence-free discrete spaces. Finite-element analysis is provided, which includes results for stability, well-posedness, and optimal convergence of both velocity and pressure solutions. Finally, several numerical experiments are presented which demonstrate the performance of NSα, as well as illustrate the advantages of pointwise divergence-free finite elements.

[1]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[2]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  Marcel Lesieur,et al.  Large-Eddy Simulations of Turbulence , 2005 .

[4]  Jeffrey M. Connors,et al.  Convergence analysis and computational testing of the finite element discretization of the Navier–Stokes alpha model , 2010 .

[5]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[6]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[7]  E. Lunasin,et al.  A study of the Navier-Stokes-α model for two-dimensional turbulence , 2007 .

[8]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[9]  Tae-Yeon Kim,et al.  A deconvolution enhancement of the Navier-Stokes-αβ model , 2012, J. Comput. Phys..

[10]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[11]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[12]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[13]  Luigi C. Berselli,et al.  Analytical and Numerical Results for the Rational Large Eddy Simulation Model , 2007 .

[14]  Luigi C. Berselli,et al.  On the Large Eddy Simulation of the Taylor–Green vortex , 2005 .

[15]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[16]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[17]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[18]  Maxim A. Olshanskii,et al.  On an Efficient Finite Element Method for Navier-Stokes-ω with Strong Mass Conservation , 2011, Comput. Methods Appl. Math..

[19]  John A. Trangenstein,et al.  Mixed and Hybrid Finite Elements , 2013 .

[20]  M. Gurtin,et al.  A continuum mechanical theory for turbulence: a generalized Navier–Stokes-α equation with boundary conditions , 2008 .

[21]  Leo G. Rebholz,et al.  An enhanced‐physics‐based scheme for the NS‐α turbulence model , 2010 .

[22]  Leo G. Rebholz,et al.  Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .

[23]  M. Gurtin,et al.  Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Germano Differential filters for the large eddy numerical simulation of turbulent flows , 1986 .

[25]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[26]  Leo G. Rebholz,et al.  Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations , 2010 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  Maxim A. Olshanskii,et al.  ENABLING NUMERICAL ACCURACY OF NAVIER-STOKES-α THROUGH DECONVOLUTION AND ENHANCED STABILITY ∗ , 2011 .

[29]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[30]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[31]  Jean-Luc Guermond,et al.  An interpretation of the Navier-Stokes-alpha model as a frame-indifferent Leray regularization , 2003 .

[32]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[33]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[34]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[35]  Leo G. Rebholz,et al.  A family of new, high order NS-α models arising from helicity correction in Leray turbulence models , 2008 .

[36]  W. Layton,et al.  Energy and helicity dissipation rates of the NS-alpha and NS-alpha-deconvolution models , 2010 .

[37]  Michael Vogelius An Analysis of the p-Version of the Finite Element Method for Nearly Incompressible Materials Uniformly Valid, Optimal Error Estimates , 1983 .

[38]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[39]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[40]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[41]  E. Fried,et al.  A numerical study of the Navier–Stokes-αβ model , 2011 .

[42]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .