Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.
暂无分享,去创建一个
Jean-Marie Tarascon | Michel Armand | Philippe Poizot | Meng Jiang | Franck Dolhem | Matthieu Courty | M. Armand | J. Tarascon | C. Grey | P. Poizot | Meng Jiang | Haiyan Chen | F. Dolhem | M. Courty | Clare P Grey | Haiyan Chen
[1] Jean-Marie Tarascon,et al. Electrochemical Reactivity of Lithium Chloranilate vs Li and Crystal Structures of the Hydrated Phases , 2009 .
[2] M. Armand,et al. Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.
[3] M. Hughes,et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.
[4] M. Armand,et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.
[5] M. Armand,et al. Building better batteries , 2008, Nature.
[6] Marco Eissen,et al. Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials , 2004 .
[7] E. Zubarev,et al. Synthesis and self-assembly of a heteroarm star amphiphile with 12 alternating arms and a well-defined core. , 2003, Journal of the American Chemical Society.
[8] Gavin Vaughan,et al. In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials , 2002 .
[9] Malcolm K. Hughes,et al. Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.
[10] P. Novák,et al. Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.
[11] J. Tarascon,et al. Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes ( 0 ≤ x ≤ 1 ) and Carbon Anodes , 1991 .
[12] D. Sazou,et al. Electrocatalytic influence of underpotential Tl, Pb and Bi monolayers on the electrochemical behaviour of rhodizonic acid and tetrahydroxy-1,4-benzoquinone on Pt in acid solutions , 1986 .
[13] S. Zigler,et al. Solid state disproportionation enthalpies , 1981 .
[14] D. Escourrou,et al. Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transport d'electrons dans les processus biologiques—VII. Reduction de l'acide rhodizonique en milieu aqueux acide , 1980 .
[15] M. Fleury,et al. Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transport d'electrons dans les processus biologiques—I: tetrahydroxyquinone et acide rhodizonique , 1975 .
[16] R. West,et al. Symmetrical Resonance Stabilized Anions, CnOn-m. II. K4C6O6 and Evidence for C6O6-3 , 1962 .
[17] F. A. Hoglan,et al. Preparation and Properties of Derivatives of Inositol , 1940 .
[18] O. Gelormini,et al. THE OXIDATION OF INOSITE WITH NITRIC ACID , 1930 .
[19] Vincenzo Balzani,et al. Die Zukunft der Energieversorgung – Herausforderungen und Chancen , 2007 .
[20] W. V. Philipsborn. Applications of double resonance and Fourier transform n.m.r. spectroscopy in organic chemistry , 1974 .
[21] P. Anastas,et al. Green Chemistry , 2018, Environmental Science.
[22] P. W. Preisler,et al. Preparation of Tetrahydroxyquinone and Rhodizonic Acid Salts from the Product of the Oxidation of Inositol with Nitric Acid , 1942 .