Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.

The use of lithiated redox organic molecules containing electrochemically active C=O functionalities, such as lithiated oxocarbon salts, is proposed. These represent alternative electrode materials to those used in current Li-ion battery technology that can be synthesized from renewable starting materials. The key material is the tetralithium salt of tetrahydroxybenzoquinone (Li(4)C(6)O(6)), which can be both reduced to Li(2)C(6)O(6) and oxidized to Li(6)C(6)O(6). In addition to being directly synthesized from tetrahydroxybenzoquinone by neutralization at room temperature, we demonstrate that this salt can readily be formed by the thermal disproportionation of Li(2)C(6)O(6) (dilithium rhodizonate phase) under an inert atmosphere. The Li(4)C(6)O(6) compound shows good electrochemical performance vs Li with a sustained reversibility of approximately 200 mAh g(-1) at an average potential of 1.8 V, allowing a Li-ion battery that cycles between Li(2)C(6)O(6) and Li(6)C(6)O(6) to be constructed.

[1]  Jean-Marie Tarascon,et al.  Electrochemical Reactivity of Lithium Chloranilate vs Li and Crystal Structures of the Hydrated Phases , 2009 .

[2]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[3]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[4]  M. Armand,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[5]  M. Armand,et al.  Building better batteries , 2008, Nature.

[6]  Marco Eissen,et al.  Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials , 2004 .

[7]  E. Zubarev,et al.  Synthesis and self-assembly of a heteroarm star amphiphile with 12 alternating arms and a well-defined core. , 2003, Journal of the American Chemical Society.

[8]  Gavin Vaughan,et al.  In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials , 2002 .

[9]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[10]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[11]  J. Tarascon,et al.  Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes ( 0 ≤ x ≤ 1 ) and Carbon Anodes , 1991 .

[12]  D. Sazou,et al.  Electrocatalytic influence of underpotential Tl, Pb and Bi monolayers on the electrochemical behaviour of rhodizonic acid and tetrahydroxy-1,4-benzoquinone on Pt in acid solutions , 1986 .

[13]  S. Zigler,et al.  Solid state disproportionation enthalpies , 1981 .

[14]  D. Escourrou,et al.  Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transport d'electrons dans les processus biologiques—VII. Reduction de l'acide rhodizonique en milieu aqueux acide , 1980 .

[15]  M. Fleury,et al.  Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transport d'electrons dans les processus biologiques—I: tetrahydroxyquinone et acide rhodizonique , 1975 .

[16]  R. West,et al.  Symmetrical Resonance Stabilized Anions, CnOn-m. II. K4C6O6 and Evidence for C6O6-3 , 1962 .

[17]  F. A. Hoglan,et al.  Preparation and Properties of Derivatives of Inositol , 1940 .

[18]  O. Gelormini,et al.  THE OXIDATION OF INOSITE WITH NITRIC ACID , 1930 .

[19]  Vincenzo Balzani,et al.  Die Zukunft der Energieversorgung – Herausforderungen und Chancen , 2007 .

[20]  W. V. Philipsborn Applications of double resonance and Fourier transform n.m.r. spectroscopy in organic chemistry , 1974 .

[21]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.

[22]  P. W. Preisler,et al.  Preparation of Tetrahydroxyquinone and Rhodizonic Acid Salts from the Product of the Oxidation of Inositol with Nitric Acid , 1942 .