Downscaling 250-m MODIS Growing Season NDVI Based on Multiple-Date Landsat Images and Data Mining Approaches

The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

[1]  George Xian,et al.  An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data , 2006 .

[2]  S. Goward,et al.  Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm , 2006 .

[3]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[4]  Conghe Song,et al.  Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain , 2011 .

[5]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Chris Funk,et al.  Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe , 2009 .

[7]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[8]  Maosheng Zhao,et al.  Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska , 2006 .

[9]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[10]  K. P. Sudheer,et al.  Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration , 2013 .

[11]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[12]  Lei Ji,et al.  Estimating aboveground biomass in interior Alaska with Landsat data and field measurements , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[13]  J. Vogelmann,et al.  Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems , 2012 .

[14]  Darrel L. Williams,et al.  Landsat and Earth Systems Science : Development of terrestrial monitoring , 1997 .

[15]  J. P. Spruce,et al.  Developing new coastal forest restoration products based on Landsat, ASTER, and MODIS data , 2009, OCEANS 2009.

[16]  B. Wylie,et al.  Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA , 2013 .

[17]  B. Wylie,et al.  NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA , 2013 .

[18]  B. Wylie,et al.  Linking Phenology and Biomass Productivity in South Dakota Mixed-Grass Prairie , 2013 .

[19]  Li Zhang,et al.  Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains , 2011, Landscape Ecology.

[20]  James P. Verdin,et al.  A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States , 2007 .

[21]  Yi Luo,et al.  A method for downscaling MODIS land channels to 250-m spatial resolution using adaptive regression and normalization , 2006, SPIE Remote Sensing.

[22]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[23]  C. Justice,et al.  A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data , 2010 .

[24]  S. Ollinger Sources of variability in canopy reflectance and the convergent properties of plants. , 2011, The New phytologist.

[25]  Lei Ji,et al.  A self-trained classification technique for producing 30 m percent-water maps from Landsat data , 2010 .

[26]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[27]  Jean T. Ellis,et al.  Geospatial method for computing supplemental multi-decadal US coastal land use and land cover classification products, using Landsat data and C-CAP products , 2014 .

[28]  Haydee Karszenbaum,et al.  Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina , 2010 .

[29]  Jan M. H. Hendrickx,et al.  Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales , 2011 .

[30]  Thomas K. Maiersperger,et al.  eMODIS: A User-Friendly Data Source , 2010 .

[31]  Alfredo Huete,et al.  Terrestrial Carbon Sinks for the United States Predicted from MODIS Satellite Data and Ecosystem Modeling , 2006 .

[32]  Daoyi Chen,et al.  Satellite-sensed distribution and spatial patterns of vegetation parameters over a tallgrass prairie , 1998 .

[33]  Yingxin Gu,et al.  Identifying grasslands suitable for cellulosic feedstock crops in the Greater Platte River Basin: dynamic modeling of ecosystem performance with 250 m eMODIS , 2012 .

[34]  Darrel L. Williams,et al.  The Landsat 7 mission: terrestrial research and applications for the 21st century , 2001 .

[35]  Terri S. Hogue,et al.  Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions , 2012 .

[36]  J. Ross Quinlan,et al.  Boosting First-Order Learning , 1996, ALT.

[37]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[38]  Carlos Torres-Verdín,et al.  Efficient Numerical Simulation of Axisymmetric Electromagnetic Induction Measurements Using a High-Order Generalized Extended Born Approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[39]  E. Helmer,et al.  Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching. , 2005 .

[40]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[41]  Yingxin Gu,et al.  Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models , 2010, Remote. Sens..

[42]  B. Wylie,et al.  NDVI, C3 AND C4 PRODUCTION, AND DISTRIBUTIONS IN GREAT PLAINS GRASSLAND LAND COVER CLASSES , 1997 .

[43]  Ghassem R. Asrar,et al.  Leaf-area estimates from spectral measurements over various planting dates of wheat , 1985 .

[44]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[45]  T. Hobbs,et al.  The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia , 1995 .

[46]  Kenton W. Ross,et al.  Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks , 2011 .

[47]  B. Wylie,et al.  Ecosystem Performance Monitoring of Rangelands by Integrating Modeling and Remote Sensing , 2012 .

[48]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[49]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[50]  Li Zhang,et al.  Integrating modelling and remote sensing to identify ecosystem performance anomalies in the boreal forest, Yukon River Basin, Alaska , 2008, Int. J. Digit. Earth.

[51]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Bruce K. Wylie,et al.  The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth , 2015, Int. J. Digit. Earth.

[53]  Darrel L. Williams,et al.  Landsat: Yesterday, Today, and Tomorrow , 2006 .

[54]  K. Shadan,et al.  Available online: , 2012 .

[55]  J. Hicke,et al.  Global synthesis of leaf area index observations: implications for ecological and remote sensing studies , 2003 .

[56]  G. Morris Southward,et al.  Satellite-based herbaceous biomass estimates in the pastoral zone of Niger , 1995 .

[57]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .

[58]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[59]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[60]  Bruce K. Wylie,et al.  Climate-Driven Interannual Variability in Net Ecosystem Exchange in the Northern Great Plains Grasslands , 2010 .

[61]  A. Viña,et al.  Drought Monitoring with NDVI-Based Standardized Vegetation Index , 2002 .

[62]  Barry Haack,et al.  Comparison and Integration of Radar and Optical Data for Land Use/Cover Mapping , 2006 .

[63]  J. Hill,et al.  Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece , 2008 .

[64]  Rajiv Ranjan,et al.  Semantic analysis and retrieval of spatial data based on the uncertain ontology model in Digital Earth , 2015, Int. J. Digit. Earth.

[65]  A. Viña,et al.  Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity , 2006 .

[66]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[67]  Bruce K. Wylie,et al.  MODIS-informed greenness responses to daytime land surface temperature fluctuations and wildfire disturbances in the Alaskan Yukon River Basin , 2013 .

[68]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[69]  Peter M. Atkinson,et al.  Downscaling in remote sensing , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[70]  J. Arnold,et al.  Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico , 2006, Environmental monitoring and assessment.

[71]  J. Townshend,et al.  Assessment of Paraguay's forest cover change using Landsat observations , 2009 .