Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics

This review presents results obtained from our group’s approach to model quantum mechanics with the aid of nonequilibrium thermodynamics. As has been shown, the exact Schrodinger equation can be derived by assuming that a particle of energy is actually a dissipative system maintained in a nonequilibrium steady state by a constant throughput of energy (heat flow). Here, also other typical quantum mechanical features are discussed and shown to be completely understandable within our approach, i.e., on the basis of the assumed sub-quantum thermodynamics. In particular, Planck’s relation for the energy of a particle, the Heisenberg uncertainty relations, the quantum mechanical superposition principle and Born’s rule, or the “dispersion of the Gaussian wave packet”, a.o., are all explained on the basis of purely classical physics.

[1]  H. Elze The Attractor and the Quantum States , 2008, 0806.3408.

[2]  K. Hizanidis,et al.  Normal and Anomalous Diffusion: A Tutorial , 2008, 0805.0419.

[3]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[4]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[5]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[6]  P. Kabos,et al.  Modified de Broglie approach applied to the Schrödinger and Klein-Gordon equations , 2003 .

[7]  Andreas Mandelis,et al.  Diffusion Waves and their Uses , 2000 .

[8]  P. Garbaczewski Information dynamics: temporal behavior of uncertainty measures , 2007, cond-mat/0703147.

[9]  E. Verlinde,et al.  On the origin of gravity and the laws of Newton , 2010, 1001.0785.

[10]  T. Wallstrom,et al.  Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  B. Hiley,et al.  The Undivided Universe: An Ontological Interpretation of Quantum Theory , 1994 .

[12]  Arezki Boudaoud,et al.  Particle–wave association on a fluid interface , 2006, Journal of Fluid Mechanics.

[13]  V. Novikov,et al.  Progress in classical and quantum variational principles , 2003 .

[14]  A. Hibbs QED: The Strange Theory of Light and Matter , 1986 .

[15]  Jarmo Makea Notes Concerning "On the Origin of Gravity and the Laws of Newton" by E. Verlinde (arXiv:1001.0785) , 2010 .

[16]  A. Valentini Signal-locality, uncertainty, and the subquantum H-theorem. II , 1991 .

[17]  Henry P. Stapp,et al.  The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .

[18]  Antony Valentini,et al.  Signal-locality, uncertainty, and the subquantum H-theorem. I , 1990 .

[19]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[20]  Friedrich Hasenöhrl,et al.  Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie , 2012 .

[21]  J. W. Humberston Classical mechanics , 1980, Nature.

[22]  Alex M. Andrew Quantum Cybernetics: Toward a Unification of Relativity and Quantum Theory via Circularly Causal Modeling , 2002 .

[23]  G Ord,et al.  Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .

[24]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[25]  T. Nieuwenhuizen What are quantum fluctuations , 2007 .

[26]  H. Schwabl,et al.  A Classical Explanation of Quantization , 2008, 0812.3561.

[27]  E. Fort,et al.  Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.

[28]  A new look at the derivation of the Schrödinger equation from Newtonian mechanics , 2003 .

[29]  M. E. Naschie,et al.  A note on quantum mechanics, diffusional interference and informions , 1995 .

[30]  P. A. Egelstaff,et al.  Tensors in Mechanics and Elasticity , 1965, Nature.

[31]  Stephen R. Williams,et al.  Independence of the transient fluctuation theorem to thermostatting details. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. Adler Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .

[33]  R. Fürth Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik , 1933 .

[34]  Timothy H. Boyer Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum , 2002 .

[35]  Michael J. W. Hall,et al.  Schrödinger equation from an exact uncertainty principle , 2001 .

[36]  R. Feynman QED: The Strange Theory of Light and Matter , 1985 .

[37]  E. Sevick,et al.  Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. , 2004, Physical review letters.

[38]  Gerhard Groessing The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics , 2008 .

[39]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[40]  Richard Phillips Feynman,et al.  The Feynman Lectures on Physics, Vol. 3: Quantum Mechanics , 1966 .

[41]  On the thermodynamic origin of the quantum potential , 2008, 0808.3539.

[42]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[43]  E. Fort,et al.  Unpredictable tunneling of a classical wave-particle association. , 2009, Physical review letters.

[44]  Siegfried Fussy,et al.  Emergence and collapse of quantum mechanical superposition: Orthogonality of reversible dynamics and irreversible diffusion , 2010 .

[45]  Gerard 't Hooft Quantum Mechanics and Determinism , 2001 .

[46]  R. Becker,et al.  Theorie der Wärme , 1966 .

[47]  A. Mandelis Diffusion-wave fields : mathematical methods and Green functions , 2001 .

[48]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[49]  Gerhard Grössing From Classical Hamiltonian Flow to Quantum Theory: Derivation of the Schrödinger Equation , 2003 .