Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics
暂无分享,去创建一个
[1] H. Elze. The Attractor and the Quantum States , 2008, 0806.3408.
[2] K. Hizanidis,et al. Normal and Anomalous Diffusion: A Tutorial , 2008, 0805.0419.
[3] P. Holland,et al. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .
[4] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[5] Yves Couder,et al. Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.
[6] P. Kabos,et al. Modified de Broglie approach applied to the Schrödinger and Klein-Gordon equations , 2003 .
[7] Andreas Mandelis,et al. Diffusion Waves and their Uses , 2000 .
[8] P. Garbaczewski. Information dynamics: temporal behavior of uncertainty measures , 2007, cond-mat/0703147.
[9] E. Verlinde,et al. On the origin of gravity and the laws of Newton , 2010, 1001.0785.
[10] T. Wallstrom,et al. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[11] B. Hiley,et al. The Undivided Universe: An Ontological Interpretation of Quantum Theory , 1994 .
[12] Arezki Boudaoud,et al. Particle–wave association on a fluid interface , 2006, Journal of Fluid Mechanics.
[13] V. Novikov,et al. Progress in classical and quantum variational principles , 2003 .
[14] A. Hibbs. QED: The Strange Theory of Light and Matter , 1986 .
[15] Jarmo Makea. Notes Concerning "On the Origin of Gravity and the Laws of Newton" by E. Verlinde (arXiv:1001.0785) , 2010 .
[16] A. Valentini. Signal-locality, uncertainty, and the subquantum H-theorem. II , 1991 .
[17] Henry P. Stapp,et al. The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .
[18] Antony Valentini,et al. Signal-locality, uncertainty, and the subquantum H-theorem. I , 1990 .
[19] E. Cohen,et al. Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.
[20] Friedrich Hasenöhrl,et al. Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie , 2012 .
[21] J. W. Humberston. Classical mechanics , 1980, Nature.
[22] Alex M. Andrew. Quantum Cybernetics: Toward a Unification of Relativity and Quantum Theory via Circularly Causal Modeling , 2002 .
[23] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .
[24] C. Poole,et al. Classical Mechanics, 3rd ed. , 2002 .
[25] T. Nieuwenhuizen. What are quantum fluctuations , 2007 .
[26] H. Schwabl,et al. A Classical Explanation of Quantization , 2008, 0812.3561.
[27] E. Fort,et al. Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.
[28] A new look at the derivation of the Schrödinger equation from Newtonian mechanics , 2003 .
[29] M. E. Naschie,et al. A note on quantum mechanics, diffusional interference and informions , 1995 .
[30] P. A. Egelstaff,et al. Tensors in Mechanics and Elasticity , 1965, Nature.
[31] Stephen R. Williams,et al. Independence of the transient fluctuation theorem to thermostatting details. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] S. Adler. Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .
[33] R. Fürth. Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik , 1933 .
[34] Timothy H. Boyer. Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum , 2002 .
[35] Michael J. W. Hall,et al. Schrödinger equation from an exact uncertainty principle , 2001 .
[36] R. Feynman. QED: The Strange Theory of Light and Matter , 1985 .
[37] E. Sevick,et al. Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. , 2004, Physical review letters.
[38] Gerhard Groessing. The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics , 2008 .
[39] Debra J. Searles,et al. The Fluctuation Theorem , 2002 .
[40] Richard Phillips Feynman,et al. The Feynman Lectures on Physics, Vol. 3: Quantum Mechanics , 1966 .
[41] On the thermodynamic origin of the quantum potential , 2008, 0808.3539.
[42] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[43] E. Fort,et al. Unpredictable tunneling of a classical wave-particle association. , 2009, Physical review letters.
[44] Siegfried Fussy,et al. Emergence and collapse of quantum mechanical superposition: Orthogonality of reversible dynamics and irreversible diffusion , 2010 .
[45] Gerard 't Hooft. Quantum Mechanics and Determinism , 2001 .
[46] R. Becker,et al. Theorie der Wärme , 1966 .
[47] A. Mandelis. Diffusion-wave fields : mathematical methods and Green functions , 2001 .
[48] W. Coffey,et al. The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .
[49] Gerhard Grössing. From Classical Hamiltonian Flow to Quantum Theory: Derivation of the Schrödinger Equation , 2003 .