Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

Abstract. This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Kohler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30–80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

[1]  Paul J. DeMott,et al.  Observation of playa salts as nuclei in orographic wave clouds , 2010 .

[2]  A. Nenes,et al.  Scanning Mobility CCN Analysis—A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics , 2010 .

[3]  A. Laskin,et al.  Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles , 2010 .

[4]  A. Nenes,et al.  Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City , 2010 .

[5]  J. Seinfeld,et al.  Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity , 2010 .

[6]  Prashant Kumar,et al.  Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol , 2009 .

[7]  Michael A. Box,et al.  Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment , 2009 .

[8]  A. Nenes,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei Measurements in the Marine Boundary Layer of the Eastern Mediterranean: Ccn Closure and Droplet Growth Kinetics , 2022 .

[9]  U. Lohmann,et al.  Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. , 2009, Physical chemistry chemical physics : PCCP.

[10]  Y. Kondo,et al.  Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters , 2009 .

[11]  Sonia M. Kreidenweis,et al.  Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles , 2009 .

[12]  Prashant Kumar,et al.  Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN , 2009 .

[13]  M. Petters,et al.  Hygroscopicity and cloud droplet activation of mineral dust aerosol , 2009 .

[14]  M. Pujadas,et al.  Individual particle characteristics of North African dust under different long-range transport scenarios , 2009 .

[15]  A. Wiedensohler,et al.  Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006 , 2009 .

[16]  M. Esselborn,et al.  Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications , 2009 .

[17]  S. Kreidenweis,et al.  Saharan dust particles nucleate droplets in eastern Atlantic clouds , 2009 .

[18]  W. Cotton,et al.  Aerosol Pollution Impact on Precipitation , 2009 .

[19]  W. Cotton,et al.  Aerosol pollution impact on precipitation : a scientific review , 2009 .

[20]  P. Formenti,et al.  Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning , 2008 .

[21]  Jennifer D. Schuttlefield,et al.  Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids , 2008 .

[22]  Volker Ebert,et al.  The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols , 2008 .

[23]  V. Grassian,et al.  Coupled infrared extinction and size distribution measurements for several clay components of mineral dust aerosol , 2008 .

[24]  B. Henson An adsorption model of insoluble particle activation: Application to black carbon , 2007 .

[25]  Ari Laaksonen,et al.  The effect of H 2 O adsorption on cloud drop activation of insoluble particles: a theoretical framework , 2007 .

[26]  I. Sokolik,et al.  Effect of mineral dust aerosols on the photolysis rates in the clean and polluted marine environments , 2007 .

[27]  Jennifer D. Schuttlefield,et al.  An investigation of water uptake on clays minerals using ATR‐FTIR spectroscopy coupled with quartz crystal microbalance measurements , 2007 .

[28]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[29]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[30]  M. Petters,et al.  On Measuring the Critical Diameter of Cloud Condensation Nuclei Using Mobility Selected Aerosol , 2007 .

[31]  Ulrich Pöschl,et al.  Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment , 2007 .

[32]  A. Nenes,et al.  Cloud droplet activation: solubility revisited , 2007 .

[33]  Irina N. Sokolik,et al.  Characterization of iron oxides in mineral dust aerosols: Implications for light absorption , 2006 .

[34]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[35]  Anthony S. Wexler,et al.  Influence of dust composition on cloud droplet formation , 2006 .

[36]  P. Field,et al.  Some ice nucleation characteristics of Asian and Saharan desert dust , 2006 .

[37]  V. Grassian,et al.  Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products , 2006 .

[38]  J. Smith,et al.  Mapping the Operation of the DMT Continuous Flow CCN Counter , 2006 .

[39]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[40]  D. Worsnop,et al.  Mass accommodation and chemical reactions at gas-liquid interfaces. , 2006, Chemical reviews.

[41]  R. A. Cox,et al.  A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces : DRIFT spectroscopy , thermogravimetric analysis and aerosol growth measurements , 2005 .

[42]  R. Zellner,et al.  Water uptake on mineral dust and soot: a fundamental view of the hydrophilicity of atmospheric particles? , 2005, Faraday discussions.

[43]  E. Weingartner,et al.  Generation of Submicron Arizona Test Dust Aerosol: Chemical and Hygroscopic Properties , 2005 .

[44]  A. Nenes,et al.  A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements , 2005 .

[45]  A. Clarke,et al.  Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight #6 , 2005 .

[46]  A. Nenes,et al.  Chemical and dynamical effects on cloud droplet number: Implications for estimates of the aerosol indirect effect: CHEMISTRY, DYNAMICS, AND DROPLET NUMBER , 2004 .

[47]  Olga V. Kalashnikova,et al.  Modeling the radiative properties of nonspherical soil-derived mineral aerosols , 2004 .

[48]  D. Worsnop,et al.  Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio , 2004 .

[49]  Douglas R. Worsnop,et al.  Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory , 2004 .

[50]  C. Usher,et al.  Reactions on mineral dust. , 2003, Chemical reviews.

[51]  J. Seinfeld,et al.  Parameterization of cloud droplet formation in global climate models , 2003 .

[52]  Sonia M. Kreidenweis,et al.  African dust aerosols as atmospheric ice nuclei , 2003 .

[53]  S. Pandis,et al.  Cloud activation of single‐component organic aerosol particles , 2002 .

[54]  J. Seinfeld,et al.  Can chemical effects on cloud droplet number rival the first indirect effect? , 2002 .

[55]  J. Penner,et al.  Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust , 2001 .

[56]  Jost Heintzenberg,et al.  Shape of atmospheric mineral particles collected in three Chinese arid‐regions , 2001 .

[57]  M. Väkevä,et al.  Adsorption of Water on 8-15 nm NaCl and (NH4)2SO4Aerosols Measured Using an Ultrafine Tandem Differential Mobility Analyzer , 2001 .

[58]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Ghan,et al.  Kinetic limitations on cloud droplet formation and impact on cloud albedo , 2001 .

[60]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[61]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[62]  J. Prospero Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  David Y. H. Pui,et al.  Effects of particle polydispersity and shape factor during dust cake loading on air filters , 1998 .

[64]  M. Reheis Dust deposition downwind of Owens (dry) Lake, 1991-1994 : Preliminary findings , 1997 .

[65]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[66]  E. Ganor,et al.  The Mineralogical and Chemical Properties and the Behaviour of Aeolian Saharan Dust Over Israel , 1996 .

[67]  R. Chester,et al.  The impact of desert dust across the Mediterranean , 1996 .

[68]  David Leith,et al.  Drag on Nonspherical Objects , 1987 .

[69]  E. Ganor,et al.  Transport of Saharan dust across the eastern Mediterranean , 1982 .

[70]  C. N. Davies Particle-fluid interaction , 1979 .

[71]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[72]  V. Farmer The Infrared spectra of minerals , 1974 .

[73]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[74]  N. Fukuta,et al.  Kinetics of Hydrometeor Growth from a Vapor-Spherical Model , 1970 .

[75]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[76]  G. J. Young Interaction of water vapor with silica surfaces , 1958 .

[77]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[78]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .