Prospects for the characterisation of exo-zodiacal dust with the VLTI

Exo-zodiacal dust, exozodi for short, is warm (∼300 K) or hot (up to ∼2000 K) dust found in the inner regions of planetary systems around main sequence stars. In analogy to our own zodiacal dust, it may be located in or near the habitable zone or closer in, down to the dust sublimation distance. The study of the properties, distribution, and evolution of exozodis can inform about the architecture and dynamics of the innermost regions of planetary systems, close to their habitable zones. On the other hand, the presence of large amounts of exo-zodiacal dust may be an obstacle for future space missions aiming to image Earth-like exoplanets. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating the dusty from the stellar emission. We discuss the prospects of exozodi observations with the next generation VLTI instruments and summarize critical instrument specifications.

[1]  Aki Roberge,et al.  The Exozodiacal Dust Problem for Direct Observations of Exo-Earths , 2012, 1204.0025.

[2]  J. Augereau,et al.  The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems , 2013, 1306.0592.

[3]  E. Serabyn,et al.  Hi-5: a potential high-contrast thermal near-infrared imager for the VLTI , 2018, Astronomical Telescopes + Instrumentation.

[4]  William C. Danchi,et al.  CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS , 2014 .

[5]  Olivier Absil,et al.  A near-infrared interferometric survey of debris-disk stars - IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER , 2014 .

[6]  G. Montagnier,et al.  Hot circumstellar material resolved around β Pic with VLTI/PIONIER , 2012, 1210.1914.

[7]  B. Mennesson,et al.  An interferometric study of the Fomalhaut inner debris disk: III. Detailed models of the exozodiacal disk and its origin , 2013, 1306.0956.

[8]  M. Wyatt,et al.  The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability , 2013, 1305.6607.

[9]  G. Montagnier,et al.  A near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six ear , 2008, 0806.4936.

[10]  M. C. Wyatt,et al.  On the Nature of the Dust in the Debris Disk around HD 69830 , 2006, astro-ph/0611452.

[11]  B. Cooper,et al.  Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System , 2001, astro-ph/0204111.

[12]  E. Serabyn,et al.  Exo--Zodiacal Dust Levels for Nearby Main Sequence Stars , 2011 .

[13]  C. Chen,et al.  Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 , 2007, 0710.0839.

[14]  I. Ribas,et al.  DUst around NEarby Stars. The survey observational results , 2013, 1305.0155.

[15]  Bertrand Mennesson,et al.  EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER , 2011 .

[16]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[17]  G. Rieke,et al.  THE STRUCTURE OF THE β LEONIS DEBRIS DISK , 2010, 1010.0003.

[18]  O. Absil,et al.  POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM , 2016, 1604.08286.

[19]  J. Milli,et al.  Searching for faint companions with VLTI/PIONIER - II. 92 main sequence stars from the Exozodi survey , 2014, 1409.6105.

[20]  Olivier Absil,et al.  Exozodiacal clouds: hot and warm dust around main sequence stars , 2017, 1703.02540.

[21]  J. Augereau,et al.  Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust , 2014, 1404.2606.

[22]  Hiroshi Kimura,et al.  Brightness of the solar F-corona , 1998 .

[23]  L. Marion,et al.  A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability , 2016, 1608.05731.

[24]  O. Absil,et al.  Hot exozodiacal dust resolved around Vega with IOTA/IONIC , 2011, 1108.3698.

[25]  B. Mennesson,et al.  The HOSTS survey for exo-zodiacal dust: preliminary results and future prospects , 2018, Astronomical Telescopes + Instrumentation.

[26]  Laurent Jocou,et al.  Searching for faint companions with VLTI/PIONIER. I. Method and first results , 2011, 1110.1178.

[27]  B. Mennesson,et al.  A near-infrared interferometric survey of debris-disk stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU , 2017 .

[28]  Andras Gaspar,et al.  MAGNETIC GRAIN TRAPPING AND THE HOT EXCESSES AROUND EARLY-TYPE STARS , 2015, 1511.04998.

[29]  E. Serabyn,et al.  The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars , 2018, 1803.11265.

[30]  Peter Abraham,et al.  Transient dust in warm debris disks - Detection of Fe-rich olivine grains , 2012, 1204.2374.

[31]  S. Ertel,et al.  Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds , 2016, 1611.02196.

[32]  G. Rieke,et al.  PROBING THE TERRESTRIAL REGIONS OF PLANETARY SYSTEMS: WARM DEBRIS DISKS WITH EMISSION FEATURES , 2014, 1407.7547.

[33]  S. Wolf,et al.  DUst around NEarby Stars , 2013 .

[34]  E. Serabyn,et al.  The path towards high-contrast imaging with the VLTI: the Hi-5 project , 2018, Experimental Astronomy.

[35]  Sebastian Wolf,et al.  Constraints on the structure of hot exozodiacal dust belts , 2017, 1701.07271.

[36]  Aaron Labdon,et al.  Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission , 2017, 1709.08514.

[37]  C. Hanot,et al.  A near-infrared interferometric survey of debris-disc stars - III. First statistics based on 42 stars observed with CHARA/FLUOR , 2013, 1307.2488.

[38]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[39]  J. Augereau,et al.  Scattering of small bodies by planets: a potential origin for exozodiacal dust? , 2012, 1209.6033.

[40]  E. Serabyn,et al.  NULLING DATA REDUCTION AND ON-SKY PERFORMANCE OF THE LARGE BINOCULAR TELESCOPE INTERFEROMETER , 2016, 1601.06866.

[41]  C. Hanot,et al.  Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions , 2009, 0910.3486.

[42]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.