Theoretical spectral function of CH3NH3PbI3 hybrid perovskite around the Fermi level

[1]  Miaoqiang Lyu,et al.  Bias effect on surface chemical states of CH3NH3PbBr3 hybrid perovskite single crystal: Decreasing CH3NH2 molecular defect , 2021 .

[2]  Y. Nakayama,et al.  Photoelectron spectroscopy on single crystals of organic semiconductors: experimental electronic band structure for optoelectronic properties , 2020 .

[3]  J. Flege,et al.  Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy , 2020 .

[4]  Yuezhan Feng,et al.  Research progress on hybrid organic–inorganic perovskites for photo-applications , 2020 .

[5]  L. Kronik,et al.  Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements. , 2019, The journal of physical chemistry letters.

[6]  N. Ueno,et al.  Band Dispersion and Hole Effective Mass of Methylammonium Lead Iodide Perovskite , 2018, Solar RRL.

[7]  H. Ebert,et al.  Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission , 2018 .

[8]  N. Koch,et al.  Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces. , 2017, ACS applied materials & interfaces.

[9]  M. Nair,et al.  First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic–inorganic perovskite , 2017 .

[10]  E. Tsymbal,et al.  Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals , 2016 .

[11]  Shengbai Zhang,et al.  Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects , 2016 .

[12]  D. Scanlon,et al.  (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? , 2015, The journal of physical chemistry letters.

[13]  Philip Schulz,et al.  Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells , 2015 .

[14]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[15]  Yongli Gao,et al.  Electronic structure evolution of fullerene on CH3NH3PbI3 , 2015 .

[16]  Fan Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x). , 2015, The journal of physical chemistry letters.

[17]  A. Schwöbel,et al.  Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON , 2014 .

[18]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[19]  W. Geng,et al.  First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for Photovoltaics , 2014 .

[20]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[21]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[22]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[23]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[24]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[25]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[26]  J. Even,et al.  Electronic model for self-assembled hybrid organic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling , 2012, 1209.3195.

[27]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[28]  H. Ebert,et al.  Calculation of angle-resolved photo emission spectra within the one-step model of photo emission - recent developments , 2010, 1010.5086.

[29]  A. Damascelli Probing the Electronic Structure of Complex Systems by ARPES , 2003, cond-mat/0307085.

[30]  K. Asai,et al.  Electronic structures of lead iodide based low-dimensional crystals , 2003 .

[31]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[32]  J. Paggel,et al.  Quantum well photoemission from atomically uniform Ag films : determination of electronic band structure and quasi-particle lifetime in Ag(100) , 2000 .

[33]  G. Papavassiliou,et al.  Structural and Electronic-Properties of the Natural Quantum-Well System (C6h5ch2ch2nh3)2sni4 , 1994 .

[34]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[35]  J. Pendry Theory of photoemission , 1976 .

[36]  J. Minár,et al.  Renormalization of the valence and conduction bands of (C6H5C2H4NH3)2PbI4 hybrid perovskite , 2021, Journal of Physics D: Applied Physics.

[37]  S. Moser An experimentalist's guide to the matrix element in angle resolved photoemission , 2017 .