Multivariate empirical characteristic functions
暂无分享,去创建一个
[1] S. Csörgo. Strong approximation of empirical kac processes , 1981 .
[2] P. Breuer. A strong approximation for some non-stationary complex Gaussian processes , 1981, Journal of Applied Probability.
[3] Sándor Csörgő,et al. Multivariate characteristic functions and tail behaviour , 1981 .
[4] A. Feuerverger,et al. On Some Fourier Methods for Inference , 1981 .
[5] Michael B. Marcus,et al. Weak Convergence of the Empirical Characteristic Function , 1981 .
[6] S. Csőrgő. Limit Behaviour of the Empirical Characteristic Function , 1981 .
[7] Sándor Csörgő,et al. The Empirical Characteristic Process When Parameters Are Estimated , 1981 .
[8] S. Csörgo. On the quantogram of Kendall and Kent , 1980, Journal of Applied Probability.
[9] R. Dudley,et al. Log Log Laws for Empirical Measures , 1980 .
[10] Walter Philipp,et al. Almost sure approximation theorems for the multivariate empirical process , 1980 .
[11] S. Csörgo. Empirical characteristic functions , 1980 .
[12] Miklós Csörgő,et al. Weak approximations of the empirical process when parameters are estimated , 1979 .
[13] B. Heinkel. Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach , 1979 .
[14] X. Fernique. Continuité et théorème central limite pour les transformées de Fourier des mesures aléatoires du second ordre , 1978 .
[15] C. R. Heathcote,et al. The integrated squared error estimation of parameters , 1977 .
[16] A. Feuerverger,et al. The Empirical Characteristic Function and Its Applications , 1977 .
[17] G. Pisier. Sur la loi du logarithme itere dans les espaces de Banach , 1976 .
[18] G. Pisier. Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach , 1976 .
[19] J. Kent. A weak convergence theorem for the empirical characteristic function , 1975, Journal of Applied Probability.
[20] David S. Moore,et al. Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .
[21] P. Major,et al. An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .
[22] Hans Richter. Das Gesetz vom iterierten Logarithmus für empirische Verteilungsfunktionen im ℝk , 1974 .
[23] M. Marcus,et al. Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions , 1974 .
[24] M. J. Wichura,et al. Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments , 1973 .
[25] James Durbin,et al. Weak convergence of the sample distribution function when parameters are estimated , 1973 .
[26] Steven Orey,et al. Sample Functions of the $N$-Parameter Wiener Process , 1973 .
[27] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[28] A. Skorokhod. Limit Theorems for Stochastic Processes , 1956 .