Multivariate empirical characteristic functions

[1]  S. Csörgo Strong approximation of empirical kac processes , 1981 .

[2]  P. Breuer A strong approximation for some non-stationary complex Gaussian processes , 1981, Journal of Applied Probability.

[3]  Sándor Csörgő,et al.  Multivariate characteristic functions and tail behaviour , 1981 .

[4]  A. Feuerverger,et al.  On Some Fourier Methods for Inference , 1981 .

[5]  Michael B. Marcus,et al.  Weak Convergence of the Empirical Characteristic Function , 1981 .

[6]  S. Csőrgő Limit Behaviour of the Empirical Characteristic Function , 1981 .

[7]  Sándor Csörgő,et al.  The Empirical Characteristic Process When Parameters Are Estimated , 1981 .

[8]  S. Csörgo On the quantogram of Kendall and Kent , 1980, Journal of Applied Probability.

[9]  R. Dudley,et al.  Log Log Laws for Empirical Measures , 1980 .

[10]  Walter Philipp,et al.  Almost sure approximation theorems for the multivariate empirical process , 1980 .

[11]  S. Csörgo Empirical characteristic functions , 1980 .

[12]  Miklós Csörgő,et al.  Weak approximations of the empirical process when parameters are estimated , 1979 .

[13]  B. Heinkel Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach , 1979 .

[14]  X. Fernique Continuité et théorème central limite pour les transformées de Fourier des mesures aléatoires du second ordre , 1978 .

[15]  C. R. Heathcote,et al.  The integrated squared error estimation of parameters , 1977 .

[16]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[17]  G. Pisier Sur la loi du logarithme itere dans les espaces de Banach , 1976 .

[18]  G. Pisier Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach , 1976 .

[19]  J. Kent A weak convergence theorem for the empirical characteristic function , 1975, Journal of Applied Probability.

[20]  David S. Moore,et al.  Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .

[21]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[22]  Hans Richter Das Gesetz vom iterierten Logarithmus für empirische Verteilungsfunktionen im ℝk , 1974 .

[23]  M. Marcus,et al.  Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions , 1974 .

[24]  M. J. Wichura,et al.  Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments , 1973 .

[25]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[26]  Steven Orey,et al.  Sample Functions of the $N$-Parameter Wiener Process , 1973 .

[27]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[28]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .