A Hybrid Graphical Model for Online Multi-camera Tracking

We present a probabilistic method for online tracking of multiple objects with sparsely distributed cameras. The method explicitly identifies objects with latent labels and introduces latent states that represent intrinsic appearance properties. The dependency between observations, discrete labels and continuous states leads to a hybrid model, which induces appearance similarities and motion constraints between observations. Conditioned on the data we approximate the posterior probabilities of the labels with an efficient online assumed-density filtering (ADF) algorithm. Our model is demonstrated by tracking people with seven cameras. The experiments indicate that the ADF approximation is a competitive alternative for multiple hypothesis tracker (in terms of accuracy) and stochastic trackers (speed).

[1]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[2]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[3]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[4]  Ingemar J. Cox,et al.  An efficient implementation and evaluation of Reid's multiple hypothesis tracking algorithm for visual tracking , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[5]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[6]  Jie Wei,et al.  Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[7]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[8]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Stuart J. Russell,et al.  Object Identification: A Bayesian Analysis with Application to Traffic Surveillance , 1998, Artif. Intell..

[10]  Ramin Zabih,et al.  Bayesian multi-camera surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[12]  Jake K. Aggarwal,et al.  Tracking Human Motion in Structured Environments Using a Distributed-Camera System , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Yaacov Ritov,et al.  Tracking Many Objects with Many Sensors , 1999, IJCAI.

[14]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[15]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[16]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[17]  Uri Lerner,et al.  Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms , 2001, UAI.

[18]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[19]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[20]  Zaharia,et al.  The Interface Specification and Implementation Internals of a Program Module for Geometric Algebra , 2002 .

[21]  Yi Li,et al.  A relaxation algorithm for real-time multiple view 3D-tracking , 2002, Image Vis. Comput..

[22]  F. Groen,et al.  Fast Translation Invariant Classification of (HRR) Range Profiles in a Zero Phase Representation , 2003 .

[23]  Yuan Qi,et al.  Expectation propagation for signal detection in flat-fading channels , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[24]  Mubarak Shah,et al.  Tracking across multiple cameras with disjoint views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  Ben Kröse,et al.  Aircraft Classification from Estimated Models of Radar Scattering , 2003 .

[27]  Jelle R. Kok,et al.  The Pursuit Domain Package , 2003 .

[28]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[29]  N. Vlassis,et al.  Gaussian mixture learning from noisy data , 2004 .

[30]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[31]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.