Integer Parameter Synthesis for Timed Automata

We provide a subclass of parametric timed automata (PTA) that we can actually and efficiently analyze, and we argue that it retains most of the practical usefulness of PTA. The currently most useful known subclass of PTA, L/U automata, has a strong syntactical restriction for practical purposes, and we show that the associated theoretical results are mixed. We therefore advocate for a different restriction scheme: since in classical timed automata, real-valued clocks are always compared to integers for all practical purposes, we also search for parameter values as bounded integers. We show that the problem of the existence of parameter values such that some TCTL property is satisfied is PSPACE-complete. In such a setting, we can also of course synthesize all the values of parameters and we give symbolic algorithms, for reachability and unavoidability properties, to do it efficiently, i.e., without an explicit enumeration. This also has the practical advantage of giving the result as symbolic constraints between the parameters. We finally report on a few experimental results to illustrate the practical usefulness of the approach.

[1]  Marcin Jurdzinski,et al.  Comparing Timed C/E Systems with Timed Automata , 1996 .

[2]  Laurent Doyen,et al.  Robust parametric reachability for timed automata , 2007, Inf. Process. Lett..

[3]  Farn Wang Parametric Timing Analysis for Real-Time Systems , 1996, Inf. Comput..

[4]  Véronique Bruyère,et al.  Real-Time Model-Checking: Parameters everywhere , 2003, Log. Methods Comput. Sci..

[5]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[6]  Salvatore La Torre,et al.  Decision Problems for Lower/Upper Bound Parametric Timed Automata , 2007, ICALP.

[7]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[8]  Emmanuelle Encrenaz-Tiphène,et al.  An Inverse Method for Parametric Timed Automata , 2008, RP.

[9]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[10]  Didier Lime,et al.  Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches , 2009, TACAS.

[11]  Irina Virbitskaite,et al.  Parametric Behaviour Analysis for Time Petri Nets , 1999, PaCT.

[12]  M. Diaz,et al.  Modeling and Verification of Time Dependent Systems Using Time Petri Nets , 1991, IEEE Trans. Software Eng..

[13]  Frits W. Vaandrager,et al.  Linear parametric model checking of timed automata , 2001, J. Log. Algebraic Methods Program..

[14]  Salvatore La Torre,et al.  Decision problems for lower/upper bound parametric timed automata , 2009, Formal Methods Syst. Des..

[15]  Didier Lime,et al.  Parametric Model-Checking of Stopwatch Petri Nets , 2009, J. Univers. Comput. Sci..

[16]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[17]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[18]  Joseph S. Miller Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata , 2000, HSCC.

[19]  Thomas A. Henzinger,et al.  Parametric real-time reasoning , 1993, STOC.

[20]  Enrico Vicario,et al.  Timed state space analysis of real-time preemptive systems , 2004, IEEE Transactions on Software Engineering.