In Situ XPS Studies of Electrochemically Positively Polarized Molybdenum Carbide Derived Carbon Double Layer Capacitor Electrode

[1]  Yaroslav Filinchuk,et al.  LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. , 2011, Angewandte Chemie.

[2]  Ken-Yen Liu,et al.  Enhancing photovoltaic performance of all-solid-state dye-sensitized solar cells by incorporating ionic liquid-physisorbed MWCNT , 2012 .

[3]  I. McKenzie,et al.  Reactions of N-heterocyclic carbenes (NHCs) with one-electron oxidants: possible formation of a carbene cation radical. , 2004, Chemical communications.

[4]  Yasuhiko Ito,et al.  Room temperature ionic liquids of alkylimidazolium cations and fluoroanions , 2000 .

[5]  E. Lust,et al.  LiPF6 based ethylene carbonate–dimethyl carbonate electrolyte for high power density electrical double layer capacitor , 2009 .

[6]  K. Bouzek,et al.  Ion-conductive polymer membranes containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate an , 2011 .

[7]  T. Romann,et al.  Abnormal infrared effects on bismuth thin film–EMImBF4 ionic liquid interface , 2012 .

[8]  J. Vickerman,et al.  Comprar Surface Analysis: The Principal Techniques | John C. Vickerman | 9780470017630 | Wiley , 2009 .

[9]  P. T. Fonseca,et al.  Beam line I411 at MAX II - Performance and first results , 2001 .

[10]  Robert G. Jones,et al.  Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS. , 2011, Physical chemistry chemical physics : PCCP.

[11]  Jason A C Clyburne,et al.  Carbon-centered strong bases in phosphonium ionic liquids. , 2008, The Journal of organic chemistry.

[12]  M. Armand,et al.  Modern generation of polymer electrolytes based on lithium conductive imidazole salts , 2009 .

[13]  David E. Williams,et al.  Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy , 1998 .

[14]  Kenneth R. Seddon,et al.  Ionic liquids. Green solvents for the future , 2000 .

[15]  M. Marcinek,et al.  Liquid electrolytes based on new lithium conductive imidazole salts , 2011 .

[16]  E. Lust,et al.  Influence of cation chemical composition and structure on the double layer capacitance for Bi(111)|room temperature ionic liquid interface , 2012 .

[17]  E. Lust,et al.  Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties , 2012 .

[18]  Hongwei Wu,et al.  A new ionic liquid organic redox electrolyte for high-efficiency iodine-free dye-sensitized solar cells , 2013 .

[19]  Arne Thomas,et al.  Functional Carbon Materials From Ionic Liquid Precursors , 2012 .

[20]  F. Yan,et al.  Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications , 2012 .

[21]  Li Xiao,et al.  Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid , 2003 .

[22]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[23]  Jack E. Fernandez,et al.  Electrochemical and Chemical Polymerization of Imidazole and Some of Its Derivatives , 1994 .

[24]  Jason A C Clyburne,et al.  Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. , 2004, Chemical communications.

[25]  Kang Xu,et al.  Toward Reliable Values of Electrochemical Stability Limits for Electrolytes , 1999 .

[26]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[27]  A. Wokaun,et al.  A reliable determination method of stability limits for electrochemical double layer capacitors , 2013 .

[28]  Alar Jänes,et al.  Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon , 2010 .

[29]  Y. Ouchi,et al.  Orientational ordering of alkyl chain at the air/liquid interface of ionic liquids studied by sum frequency vibrational spectroscopy , 2004 .

[30]  Young Gyu Kim,et al.  Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains , 2006 .

[31]  R. Kötz,et al.  Quasi in situ XPS study of anion intercalation into HOPG from the ionic liquid [EMIM][BF4] , 2010 .

[32]  E. Lust,et al.  Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? , 2012 .

[33]  Y. Fung,et al.  Room temperature molten salt as medium for lithium battery , 1999 .

[34]  E. Lust,et al.  Electrochemical Characteristics of Carbide-Derived Carbon ∣ 1 -Ethyl-3-methylimidazolium Tetrafluoroborate Supercapacitor Cells , 2010 .

[35]  Uwe W. Hamm,et al.  Adsorption of pyrazine on Au(111) and Ag(111) electrodes an ex situ XPS study , 1996 .

[36]  Licheng Sun,et al.  Solvent-free ionic liquid electrolytes without elemental iodine for dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[37]  R. Kötz,et al.  XPS analysis of activated carbon supported ionic liquids: Enhanced purity and reduced charging , 2011 .

[38]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[39]  T. Romann,et al.  Surface chemistry of carbon electrodes in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid – an in situ infrared study , 2014 .

[40]  H. Sakaebe,et al.  Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]− , 2006 .

[41]  A. Wokaun,et al.  In situ electrochemical XPS study of the Pt/[EMIM][BF4] system , 2011 .

[42]  C. Peters,et al.  Decomposition of ionic liquids in electrochemical processing , 2006 .

[43]  Usman Ali Rana,et al.  Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells , 2012 .

[44]  A. Laubengayer,et al.  Donor-Acceptor Bonding. III. Methyl Cyanide Addition Compounds of Boron Trichloride and Boron Trifluoride , 1945 .

[45]  R. Kötz,et al.  Quasi in situ XPS study of electrochemical oxidation and reduction of highly oriented pyrolytic graphite in [1-ethyl-3-methylimidazolium][BF4] electrolytes , 2011 .

[46]  P. Licence,et al.  Spectroelectrochemistry at ultrahigh vacuum: in situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy. , 2009, Chemical communications.

[47]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[48]  Weiping Zhou,et al.  Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by X-ray photoelectron spectroscopy , 2004 .

[49]  Arunabha Ghosh,et al.  Carbon-based electrochemical capacitors. , 2012, ChemSusChem.

[50]  V. Ivaništšev,et al.  Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(1 1 1)|1-butyl-4-methylpyridinium tetrafluoroborate interface , 2013 .

[51]  R. Compton,et al.  Monitoring potassium metal electrodeposition from an ionic liquid using in situ electrochemical-X-ray photoelectron spectroscopy , 2011 .

[52]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[53]  I. Marrucho,et al.  Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. , 2010, The journal of physical chemistry. A.

[54]  E. Min,et al.  Ionic liquids: applications in catalysis , 2002 .

[55]  Aiping Yu,et al.  Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene , 2011 .

[56]  A. Kornyshev,et al.  Ionic liquid near a charged wall: structure and capacitance of electrical double layer. , 2008, The journal of physical chemistry. B.

[57]  K. Takagi,et al.  Electrochemical properties of novel ionic liquids for electric double layer capacitor applications , 2004 .

[58]  E. Lust,et al.  Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions , 2004 .

[59]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[60]  Cheng-gong Sun,et al.  Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors , 2006 .

[61]  E. Lust,et al.  Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide , 2009 .

[62]  J. Fuller,et al.  Structural and electrochemical characterization of 1,3-bis-(4-methylphenyl)imidazolium chloride , 1994 .

[63]  Peter Licence,et al.  Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy. , 2005, Chemical communications.

[64]  P. Licence,et al.  Ionic liquids in vacuo: analysis of liquid surfaces using ultra-high-vacuum techniques. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[65]  X. Zhao,et al.  On the configuration of supercapacitors for maximizing electrochemical performance. , 2012, ChemSusChem.