Quantum dot and quantum wire infrared photodetectors

This paper deals with a physical analysis of the factors determining the operation of the quantum dot and quantum wire infrared photodetectors and their features focusing on semi-qualitative approach and comparison with quantum well infrared photodetectors. We address also the problems of computer modeling of these photodetectors.

[1]  V. Ryzhii,et al.  Electron density modulation effect in a quantum-well infrared phototransistor , 1995 .

[2]  M. Helm,et al.  Intersubband Absorption in Strongly Coupled Superlattices: Miniband Dispersion, Critical Points, and Oscillator Strengths , 1994 .

[3]  A. Yariv,et al.  Fundamental Limits in Quantum Well Intersubband Detection , 1992 .

[4]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[5]  V. Ryzhii,et al.  Contact and distributed effects in quantum well infrared photodetectors , 1995 .

[6]  M. Stroscio,et al.  Quantum-dot photodetector operating at room temperatures: diffusion-limited capture , 2002 .

[7]  H. Liu,et al.  Quantum dot infrared photodetectors , 2003 .

[8]  Joe C. Campbell,et al.  Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity , 2002 .

[9]  D. Bouchier,et al.  Midinfrared Photoconductivity in Ge/Si Self-Assembled Quantum Dots , 2001 .

[10]  Dark Current in Quantum Dot Infrared Photodetectors , 2000 .

[12]  Kwong-Kit Choi,et al.  The Physics of Quantum Well Infrared Photodetectors , 1997 .

[13]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[14]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[15]  J. Nagle,et al.  Emission and capture of electrons in multiquantum-well structures , 1994 .

[16]  Shiang-Feng Tang,et al.  InAs/GaAs quantum dot infrared photodetector (QDIP) with double Al/sub 0.3/Ga/sub 0.7/As blocking barriers , 2002 .

[17]  S. Luryi An induced base hot-electron transistor , 1985, IEEE Electron Device Letters.

[18]  Victor Ryzhii,et al.  Characteristics of quantum well infrared photodetectors , 1997 .

[19]  V. Ryzhii,et al.  Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions , 2002 .

[20]  A. Vasanelli,et al.  Energy levels and far-infrared absorption of multi-stacked dots , 2001 .

[21]  V. Ryzhii,et al.  Multiple quantum-dot infrared phototransistors , 1996 .

[22]  Manijeh Razeghi,et al.  Long Wavelength Infrared Detectors , 1997 .

[23]  G. Abstreiter,et al.  Vertical and lateral mid-infrared photocurrent study on Ge quantum dots in Si , 2001 .

[24]  V. Ryzhii,et al.  Periodic electric-field domains in optically excited multiple-quantum-well structures , 2000 .

[25]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[26]  Maxim Ryzhii,et al.  Comparison Studies of Infrared Phototransistors with a Quantum-Well and a Quantum-Wire Base , 1996 .

[27]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[28]  Hui Chun Liu,et al.  Photoconductive gain mechanism of quantum‐well intersubband infrared detectors , 1992 .

[29]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[30]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[31]  Maxim Ryzhii,et al.  Electric-field and space-charge distributions in InAs/GaAs quantum-dot infrared photodetectors: ensemble Monte Carlo particle modeling , 2003, Microelectron. J..

[32]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[33]  Magnus Willander,et al.  On the detectivity of quantum-dot infrared photodetectors , 2001 .

[34]  E. Towe,et al.  A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector , 1999 .

[35]  E. Finkman,et al.  Midinfrared photoconductivity of Ge/Si self-assembled quantum dots , 2000 .

[36]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[37]  Z. R. Wasilewski,et al.  Tunnel current in quantum dot infrared photodetectors , 2003 .

[38]  Magnus Willander,et al.  Why QDIPs are still inferior to QWIPs: theoretical analysis , 2001, SPIE OPTO.

[39]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[40]  Magnus Willander,et al.  Device model for quantum dot infrared photodetectors and their dark-current characteristics , 2001 .

[41]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[42]  A. Yakimov,et al.  Normal-incidence infrared photoconductivity in Si p-i-n diode with embedded Ge self-assembled quantum dots , 1999 .

[43]  Analysis of the Photocurrent in Quantum Dot Infrared Photodetectors : Semiconductors , 2001 .