Feature-based Analysis of a Multi-Parameter Flow Simulation

In our work we examine a high-dimensional, massive flow data set around an airfoil using a topology-based vortex analysis. The 3D time-dependent flow depends on two additional parameters which are introduced by an active flow control technique aiming at increasing the lift by periodic blowing and suction. In particular, we study the influence of the actuation parameters frequency and intensity of air injection and show how our vortex analysis helps in understanding the underlying physics.

[1]  Hans-Christian Hege,et al.  Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Hans-Christian Hege,et al.  Cores of Swirling Particle Motion in Unsteady Flows , 2007, IEEE Transactions on Visualization and Computer Graphics.

[3]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[4]  Mohamed Gad-el-Hak,et al.  Flow Control: The Future , 2001 .

[5]  Ahmed A. Hassan,et al.  Effects of Zero-Mass “Synthetic” Jets on the Aerodynamics of the NACA-0012 Airfoil , 1998 .

[6]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[7]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[8]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[9]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[10]  Lars Koop,et al.  Investigation of the unsteady flow field inside a leading edge slat cove , 2005 .

[11]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[12]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[13]  Simon Stegmaier,et al.  Opening the can of worms: an exploration tool for vortical flows , 2005, VIS 05. IEEE Visualization, 2005..

[14]  Robert S. Laramee,et al.  Feature Extraction and Visualisation of Flow Fields , 2002, Eurographics.

[15]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[16]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  D V Maddalon,et al.  Transition Flight Experiments on a Swept Wing With Suction , 1989 .

[18]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[19]  Israel J Wygnanski The Variables Affecting the Control of Separation by Periodic Excitation , 2004 .

[20]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[21]  Lars Koop Aktive und passive Strömungsbeeinflussung zur Reduzierung der Schallabstrahlung an Hinterkantenklappen von Tragflügeln , 2005 .

[22]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[23]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .

[24]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[25]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[26]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..