다층 신경회로망을 위한 자기 구성 알고리즘
暂无分享,去创建一个
신경회로망을 이용하여 주어진 문제를 해결할 때, 문제의 복잡도에 맞는 구조를 찾는 것이 중요하다. 이것은 신경회로망의 복잡도가 학습능력과 일반화 성능에 크게 영향을 주기 때문이다. 그러므로, 문제에 적합한 신경회로망의 구조를 자기 구성적으로 찾는 알고리즘이 유용하다. 본 논문에서는 시그모이드 활성합수를 가지는 전방향 다층 신경회로망에 대하여 주어진 문제에 맞는 구조를 결정하는 알고리즘을 제안한다. 개발된 알고리즘은 구조증가 알고리즘과 연결소거 알고리즘을 이용하여, 주어진 학습 데이터에 대해 가능한 한 작은 구조를 가지며 일반화 성능이 좋은 최적에 가까운 신경회로망을 찾는다. 네 가지 함수 근 사화 문제에 적용하여 알고리즘의 성능을 알아본다. 실험 결과에서, 제안한 알고리즘이 기존의 알고리즘 및 고정구조를 갖는 신경회로망과 비교하였을 때 최적 구조에 가까운 신경회로망을 구성하는 것을 확인한다.