On-the-Fly Adaptive Smoothed Aggregation Multigrid for Markov Chains

A new adaptive algebraic multigrid scheme is developed for the solution of Markov chains, where the hierarchy of operators is adapted on-the-fly in a setup process that is interlaced with the solution process. The setup process feeds the solution process with improved operators, while the solution process provides the adaptive setup process with better approximations on which to base further-improved operators. The approach is demonstrated using Petrov-Galerkin smoothed aggregation where only the prolongation operator is smoothed, while the restriction remains of low order. Results show that the on-the-fly adaptive scheme can improve the performance of multigrid solvers that require extensive setup computations, in both serial and parallel environments.

[1]  Graham Horton,et al.  A multi-level solution algorithm for steady-state Markov chains , 1994, SIGMETRICS.

[2]  A. Borzì,et al.  Algebraic multigrid methods for solving generalized eigenvalue problems , 2006 .

[3]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[4]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[7]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[8]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[9]  S. McCormick Multilevel adaptive methods for elliptic eigenproblems: a two-level convergence theory , 1994 .

[10]  S. McCormick,et al.  Multigrid Methods for Differential Eigenproblems , 1983 .

[11]  Thomas A. Manteuffel,et al.  Algebraic Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[12]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[13]  Petr Vanek,et al.  Analysis of an algebraic Petrov--Galerkin smoothed aggregation multigrid method , 2008 .

[14]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[15]  Petr Vanek,et al.  An Aggregation Multigrid Solver for convection-diffusion problems onunstructured meshes. , 1998 .

[16]  Thomas A. Manteuffel,et al.  Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..

[17]  J. Dendy Black box multigrid , 1982 .

[18]  Achi Brandt,et al.  A Bootstrap Algebraic Multilevel Method for Markov Chains , 2010, SIAM J. Sci. Comput..

[19]  Irad Yavneh,et al.  Fast multilevel methods for Markov chains , 2011, Numer. Linear Algebra Appl..

[20]  Marian Brezina,et al.  Two-grid Method for Linear Elasticity on Unstructured Meshes , 1999, SIAM J. Sci. Comput..

[21]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[22]  Elena Virnik,et al.  An Algebraic Multigrid Preconditioner for a Class of Singular M-Matrices , 2007, SIAM J. Sci. Comput..

[23]  Ulrike Meier Yang,et al.  Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .

[24]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[25]  Thomas A. Manteuffel,et al.  Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[26]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[27]  Irad Yavneh,et al.  Square and stretch multigrid for stochastic matrix eigenproblems , 2010, Numer. Linear Algebra Appl..

[28]  Thomas A. Manteuffel,et al.  Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains , 2011, Adv. Comput. Math..

[29]  M. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTILEVEL PRECONDITIONING∗ , 2006 .

[30]  Yvan Notay,et al.  Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..

[31]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[32]  D. Ron,et al.  Multigrid Solvers and Multilevel Optimization Strategies , 2003 .

[33]  Thomas A. Manteuffel,et al.  Algebraic multigrid for higher-order finite elements , 2005 .

[34]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[35]  Hans De Sterck,et al.  Recursively Accelerated Multilevel Aggregation for Markov Chains , 2010, SIAM J. Sci. Comput..

[36]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[37]  Maximilian Emans Efficient Parallel AMG Methods for Approximate Solutions of Linear Systems in CFD Applications , 2010 .