Combinatorial Random Walks on 3-Manifolds

We define a combinatorial, discrete-time random walk on a closed, triangulated 3-manifold. As one varies the triangulation, keeping the number of tetrahedra fixed, the maximal mean commute time of the random walk becomes a random variable on a finite, uniform probability space of triangulations. Using computer experiments, we obtain empirical density functions for these random variables. The densities are then applied in developing Bayes-type heuristics that allow a walking entity, moving randomly in an unknown 3-manifold, to obtain probabilistic information about which manifold it might be moving in. Mean commute times are calculated via the effective electrical resistance of certain quartic graphs associated with the random walk. As a by-product, we define a topological invariant, the electrical resistance, of a 3-manifold, which we interpret as a refined complexity measure with values in the rational numbers.

[1]  W. B. R. Lickorish Simplicial moves on complexes and manifolds , 1999 .

[2]  Uriel Feige,et al.  Random Walks on Regular and Irregular Graphs , 1996, SIAM J. Discret. Math..

[3]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[4]  Gregory Leibon Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization , 2000 .

[5]  D. Walkup The lower bound conjecture for 3- and 4-manifolds , 1970 .

[6]  Frank H. Lutz,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Triangulated Manifolds with Few Vertices: Combinatorial Manifolds , 2022 .

[7]  Gregory Leibon Random Delaunay triangulations and metric uniformization , 2000 .

[8]  U. Pachner,et al.  Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten , 1987 .

[9]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[10]  Udo Pachner,et al.  Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten , 1978 .

[11]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[12]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[13]  Amos Altshuler,et al.  An enumeration of combinatorial 3-manifolds with nine vertices , 1976, Discret. Math..

[14]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .

[15]  Benjamin A. Burton FACE PAIRING GRAPHS AND 3-MANIFOLD ENUMERATION , 2004 .

[16]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[17]  R. Bing An Alternative Proof that 3-Manifolds Can be Triangulated , 1959 .