Combinatorial Random Walks on 3-Manifolds
暂无分享,去创建一个
[1] W. B. R. Lickorish. Simplicial moves on complexes and manifolds , 1999 .
[2] Uriel Feige,et al. Random Walks on Regular and Irregular Graphs , 1996, SIAM J. Discret. Math..
[3] David J. Aldous,et al. Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .
[4] Gregory Leibon. Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization , 2000 .
[5] D. Walkup. The lower bound conjecture for 3- and 4-manifolds , 1970 .
[6] Frank H. Lutz,et al. Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Triangulated Manifolds with Few Vertices: Combinatorial Manifolds , 2022 .
[7] Gregory Leibon. Random Delaunay triangulations and metric uniformization , 2000 .
[8] U. Pachner,et al. Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten , 1987 .
[9] Prabhakar Raghavan,et al. The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.
[10] Udo Pachner,et al. Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten , 1978 .
[11] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[12] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[13] Amos Altshuler,et al. An enumeration of combinatorial 3-manifolds with nine vertices , 1976, Discret. Math..
[14] Edwin E. Moise,et al. Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .
[15] Benjamin A. Burton. FACE PAIRING GRAPHS AND 3-MANIFOLD ENUMERATION , 2004 .
[16] G. Marsaglia,et al. A New Class of Random Number Generators , 1991 .
[17] R. Bing. An Alternative Proof that 3-Manifolds Can be Triangulated , 1959 .