POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES

We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$ , $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$ $=f(x)$ almost everywhere with respect to Lebesgue measure for all $f\in H^{s}(\mathbb{R}^{n})$ provided that $s>(n+1)/2(n+2)$ . The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.

[1]  K. Rogers,et al.  Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation , 2017 .

[2]  K. Rogers,et al.  A note on pointwise convergence for the Schrödinger equation , 2017, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  J. Bourgain A note on the Schrödinger maximal function , 2016, 1609.05744.

[4]  L. Guth Restriction estimates using polynomial partitioning II , 2016, 1603.04250.

[5]  K. Rogers,et al.  Average decay of the Fourier transform of measures with applications , 2015, Journal of the European Mathematical Society.

[6]  L. Guth A short proof of the multilinear Kakeya inequality , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  L. Guth A restriction estimate using polynomial partitioning , 2014, 1407.1916.

[8]  J. Bourgain,et al.  The proof of the $l^2$ Decoupling Conjecture , 2014, 1403.5335.

[9]  J. Bourgain On the Schrödinger maximal function in higher dimension , 2012, 1201.3342.

[10]  A. Carbery,et al.  On the dimension of divergence sets of dispersive equations , 2011 .

[11]  Terence Tao,et al.  On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.

[12]  Sanghyuk Lee,et al.  On pointwise convergence of the solutions to Schrödinger equations in ℛ2 , 2006 .

[13]  D. Zubrinic Singular sets of Sobolev functions , 2002 .

[14]  P. Sjölin,et al.  Convergence properties for the time-dependent Schrödinger equation , 1989 .

[15]  C. Kenig,et al.  A note on the almost everywhere behavior of solutions to the Schrödinger equation , 1982 .

[16]  Lennart Carleson,et al.  Some analytic problems related to statistical mechanics , 1980 .

[17]  G. Harcos,et al.  The Institute for Advanced Study , 1933, Nature.