Study of the possibility of using an artificial neural network to recognize and assess the contribution of individual radionuclides to the total beta spectrum

The aim of this work is to study the possibility of using an artificial neural network for identification and quantitative assessment of the content of individual radionuclides in the total beta spectrum. The neural network implemented by using of Matlab R2020b. A single-layer feedforward neural network with one invisible layer of 10 neurons and 3 outputs (according to the number of radionuclides) was used. To test and study the capabilities of the artificial neural network, 3 smooth model spectra were selected – 40 K, 137 Cs and 90 Sr, obtained on the liquid spectrometer Quantulus 1220. The results of the study showed that neural networks are an effective method for recognizing оf the contribution of an individual radionuclide or establishing its presence in the total beta spectrum. The recognition accuracy depends on the smoothness of the spectrum and does not exceed 30% if the share of the radionuclide in the total spectrum is more than 10%, which is quite suitable for practical use. For statistically «noising» spectra, the method can be used to preliminary estimate the weight coefficients of individual radionuclides, the final value of which can be obtained by minimization methods with subsequent statistical criterial fitting of the total spectrum shape.

[1]  С. Ю. Буряк,et al.  Современные методы обработки морской инженерной сейсморазведки , 2018 .

[2]  V. Lazurik,et al.  Advantages of neural networks for deriving an electrons spectrum from depth-charge curve , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[3]  Tikhomirov,et al.  Liquid scintillation determination of low level components in complex mixtures of radionuclides , 2000, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[4]  I. V. Kisel,et al.  Applications of neural networks in experimental physics , 1993 .

[5]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[6]  Кириченко Александр Аполлонович Теория нейронных сетей. Лекции , 2017 .

[7]  Галушкин Александр Иванович,et al.  Нейронные сети: история развития теории , 2015 .

[8]  Руслан Иванович Баженов,et al.  Распознавание образов с помощью нейронных сетей в среде MatlabR2009b , 2015 .

[9]  Орехов Евгений Витальевич Интеллектуальные Информационные Системы В Управлении Развитием Персонала , 2014 .

[10]  Oleksandr Baiev,et al.  Use of Neural Networks for Monitoring Beam Spectrum of Industrial Electron Accelerators , 2013, ICTERI.

[11]  Кириченко Александр Аполлонович Нейропакеты – современный интеллектуальный инструмент исследователя. Сетевое электронное издание учебного пособия , 2013 .

[12]  Семейкин Валерий Дмитриевич,et al.  Моделирование искусственных нейронных сетей в среде Matlab , 2009 .

[13]  Igor Aleksander,et al.  A theory of neural networks , 2003 .

[14]  Валерий Г. Потемкин,et al.  Нейронные сети. Matlab 6 , 2002 .

[15]  John Durkin,et al.  Expert Systems , 1994 .

[16]  В.Л. Дунин-Барковский,et al.  Нейронные сети и нейрокомпьютеры: тенденции развития исследований и разработок , 1990 .