Flow of fractal fluid in pipes: Non-integer dimensional space approach

Using a generalization of vector calculus for the case of non-integer dimensional space we consider a Poiseuille flow of an incompressible viscous fractal fluid in the pipe. Fractal fluid is described as a continuum in non-integer dimensional space. A generalization of the Navier–Stokes equations for non-integer dimensional space, its solution for steady flow of fractal fluid in a pipe and corresponding fractal fluid discharge are suggested.

[1]  O. Agrawal,et al.  Schrödinger Equation in Fractional Space , 2012 .

[2]  E. Gabryś,et al.  Blood flow simulation through fractal models of circulatory system , 2006 .

[3]  M. Zubair,et al.  THE WAVE EQUATION AND GENERAL PLANE WAVE SOLUTIONS IN FRACTIONAL SPACE , 2010 .

[4]  D. Baleanu,et al.  On electromagnetic field in fractional space , 2010 .

[5]  Pietro Cornetti,et al.  A fractional calculus approach to the description of stress and strain localization in fractal media , 2002 .

[6]  Q. Naqvi,et al.  AN EXACT SOLUTION OF THE SPHERICAL WAVE EQUATION IN D-DIMENSIONAL FRACTIONAL SPACE , 2011 .

[7]  D. Spencer,et al.  The meaning of the vector Laplacian , 1953 .

[8]  Qaisar Abbas Naqvi,et al.  An Exact Solution of the Cylindrical Wave Equation for Electromagnetic Field in Fractional Dimensional Space , 2011 .

[9]  R. Uthayakumar,et al.  Fractal model for blood flow in cardiovascular system , 2008, Comput. Biol. Medicine.

[10]  A. Balankin,et al.  Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'". , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  A. Balankin,et al.  Hydrodynamics of fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Vasily E. Tarasov Dynamics of Fractal Solids , 2005 .

[13]  Pietro Cornetti,et al.  Calculation of the tensile and flexural strength of disordered materials using fractional calculus , 2004 .

[14]  A. Balankin,et al.  Map of fluid flow in fractal porous medium into fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Y. Xiaojun,et al.  Advanced Local Fractional Calculus and Its Applications , 2012 .

[16]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[17]  George Leibbrandt,et al.  Introduction to the Technique of Dimensional Regularization , 1975 .

[18]  S. Arabia,et al.  Systems of Navier-Stokes equations on Cantor sets , 2013 .

[19]  M. A. Lohe,et al.  Quantum mechanical models in fractional dimensions , 2004 .

[20]  Pietro Cornetti,et al.  Fractional calculus in solid mechanics: local versus non-local approach , 2009 .

[21]  Martin Ostoja-Starzewski,et al.  Waves in Fractal Media , 2011 .

[22]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[23]  Jun Li,et al.  Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow". , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  A. Thilagam Exciton-phonon interaction in fractional dimensional space , 1997 .

[25]  V. E. Tarasov Fractional hydrodynamic equations for fractal media , 2005, physics/0602096.

[26]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[27]  Pietro Cornetti,et al.  Static–kinematic duality and the principle of virtual work in the mechanics of fractal media , 2001 .

[28]  Robert I. Nigmatulin,et al.  Dynamics of multiphase media , 1991 .

[29]  Haroldo V. Ribeiro,et al.  Fractional Schrödinger equation with noninteger dimensions , 2012, Appl. Math. Comput..

[30]  K. Svozil Quantum field theory on fractal spacetime: a new regularisation method , 1987 .

[31]  Peter Grabner,et al.  Laplace operators on fractals and related functional equations , 2012, 1206.1211.

[32]  Vasily E. Tarasov Fractional Liouville and BBGKI Equations , 2005 .

[33]  Dumitru Baleanu,et al.  On fractional Schrdinger equation in a -dimensional fractional space , 2009 .

[34]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[35]  Qaisar Abbas Naqvi,et al.  On electromagnetic wave propagation in fractional space , 2011 .

[36]  Vasily E. Tarasov,et al.  Vector calculus in non-integer dimensional space and its applications to fractal media , 2015, Commun. Nonlinear Sci. Numer. Simul..

[37]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[38]  D. Baleanu,et al.  Fractional multipoles in fractional space , 2007 .

[39]  G. Calcagni,et al.  Quantum mechanics in fractional and other anomalous spacetimes , 2012, 1207.4473.

[40]  R. Strichartz ANALYSIS ON FRACTALS , 1999 .

[41]  M. Ostoja-Starzewski,et al.  From fractal media to continuum mechanics , 2014 .

[42]  J. Kigami,et al.  Analysis on Fractals , 2001 .

[43]  V. E. Tarasov Continuous Medium Model for Fractal Media , 2005, cond-mat/0506137.

[44]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .

[45]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[46]  Deformation of quantum mechanics in fractional-dimensional space , 2001, quant-ph/0107062.

[47]  Jun Li,et al.  Fractal materials, beams, and fracture mechanics , 2009 .

[48]  J. Li,et al.  Erratum: Fractal solids, product measures and fractional wave equations (Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (2009) 465 (2521-2536) DOI: 10.1098/rspa.2009.0101) , 2011 .

[49]  Q. Naqvi,et al.  Electromagnetic Fields and Waves in Fractional Dimensional Space , 2012 .

[50]  M. Ostoja-Starzewski,et al.  Fractal solids, product measures and fractional wave equations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  T. Kumagai Recent developments of analysis on fractals , 2008 .

[52]  S. Muslih Solutions of a Particle with Fractional δ-Potential in a Fractional Dimensional Space , 2010, 1001.4352.

[53]  D. Benson,et al.  Fractional calculus in hydrologic modeling: A numerical perspective. , 2013, Advances in water resources.

[54]  He,et al.  Fractional dimensionality and fractional derivative spectra of interband optical transitions. , 1990, Physical review. B, Condensed matter.

[55]  Pietro Cornetti,et al.  A disordered microstructure material model based on fractal geometry and fractional calculus , 2004 .

[56]  Vasily E. Tarasov WAVE EQUATION FOR FRACTAL SOLID STRING , 2005 .

[57]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[58]  H. V. Ribeiro,et al.  Solutions for a fractional diffusion equation with noninteger dimensions , 2012 .

[59]  Paul N. Stavrinou,et al.  Equations of motion in a non-integer-dimensional space , 2004 .

[60]  D. Baleanu,et al.  Lagrangian formulation of Maxwell's field in fractional D dimensional space-time , 2010 .

[61]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[62]  Donald L. Koch,et al.  Fluid dynamics in multiphase systems , 1989 .

[63]  V. E. Tarasov Anisotropic fractal media by vector calculus in non-integer dimensional space , 2014, 1503.02392.

[64]  M. Ostoja-Starzewski,et al.  Micropolar continuum mechanics of fractal media , 2011 .

[65]  X. He,et al.  Anisotropy and isotropy: A model of fraction-dimensional space , 1990 .

[66]  Vasily E Tarasov Fractional systems and fractional Bogoliubov hierarchy equations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  He Excitons in anisotropic solids: The model of fractional-dimensional space. , 1991, Physical review. B, Condensed matter.

[68]  Yi Li,et al.  A fractal model for the coupled heat and mass transfer in porous fibrous media , 2011 .

[69]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[70]  A. Matos-Abiague,et al.  Bose-like oscillator in fractional-dimensional space , 2001 .

[71]  Jenny Harrison,et al.  Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems , 1999 .

[72]  S. L. Soo,et al.  Fluid dynamics of multiphase systems , 1967 .

[73]  Pietro Cornetti,et al.  Static‐kinematic fractional operators for fractal and non‐local solids , 2009 .